
SmartWiFi: Universal and Secure Smart
Contract-Enabled WiFi Hotspot

Nikolay Ivanov, Jianzhi Lou, and Qiben Yan

Michigan State University, East Lansing MI 48824, USA
{ivanovn1,loujianz,qyan}@msu.edu

Abstract. WiFi hotspots have been widely used for establishing pub-
lic WiFi services and enterprise networks. However, WiFi hotspots often
suffer from mediocre security, unreliable performance, limited access, and
cumbersome authentication procedure. Specifically, public WiFi hotspots
can rarely guarantee satisfactory speed and uptime, and their configu-
ration often requires a complicated setup with subscription to a pay-
ment aggregator. Moreover, paid hotspots can neither protect clients
against low quality or non-service after prepayment, nor do they pro-
vide an adequate defense against misuse by the clients. In this paper,
we propose SmartWiFi, a universal, secure, and decentralized smart
contract-enabled WiFi hotspot that can be deployed in any public or
private environment. SmartWiFi provides cross-domain authentication,
fully automated accounting and payments, and security assurance for
both hotspots and clients without relying on complex authentication and
billing infrastructure. SmartWiFi utilizes a novel off-chain transaction
scheme called Hash Chain-based Network Connectivity Satisfaction Ac-
knowledgement (Hansa), which enables fast and low-cost provider-client
protocol by restricting otherwise unacceptable delays and fees associated
with blockchain interaction. In addition, we present DupSet, a dynamic
user-perceived speed estimation technique, which can reliably evaluate
the quality of Internet connection from the users’ perspective. We design
and implement SmartWiFi desktop and mobile apps using an Ethereum
smart contract. With extensive experimental evaluation, we demonstrate
that SmartWiFi exhibits rapid execution with low communication over-
head and reduced blockchain fees that are adjustable for balancing delays
and costs.

Keywords: WiFi hotspot · Smart contract · Blockchain transaction.

1 Introduction

The number of mobile Internet users have been steadily increasing, corroborating
a pressing need for reliable wireless connectivity to be available everywhere,
all the time. As opposed to cellular communications, WiFi provides a low-cost
solution for wireless Internet access with a miniature infrastructure [14]. During
the past two decades, WiFi has become the de facto standard for wireless local
area networks (WLAN) and Internet-of-Things (IoT) [19].



2 N. Ivanov et al.

The WiFi technology has been used to create hotspots to offer Internet access
to users in their proximity. WiFi hotspots are typically seen in such venues as air-
ports, cafes, hotels, etc. Private hotspots are often configured in enterprise, per-
sonal, and household networks to serve limited number of WiFi-enabled devices.
Both public and private hotspots often require authentication and/or payment.
Two or more hotspots belong to the same authentication domain if they share the
same authentication server and, if applicable, share a payment server. Although
a number of technologies have been introduced for cross-domain authentication,
such as Passpoint [7] and eduroam [1], WiFi hotspots are still partitioned into
a multitude of incompatible domains, which makes seamless WiFi roaming in-
feasible. In this work, we introduce a practical solution for a universal (i.e.,
cross-domain) and decentralized hotspot network, which addresses the domain
partitioning problem. Ultimately, we envision a fully automated cross-
domain authentication between wireless APs provided by different
businesses and private owners, forming a global permissionless decen-
tralized network of free and paid hotspots. However, in order to achieve
this goal, a number of existing hotspots’ shortcomings must be addressed.

Motivation. Despite its obvious benefits and popularity, the current WiFi
hotspot technology experiences significant shortcomings: M1) Security: Public
WiFi often eliminates password protection or conveys the passwords insecurely.
M2) Unreliable performance: The speed of a WiFi hotspot largely depends on
several unpredictable factors, such as the number of connected users or the
bandwidth consumption of each individual user. Moreover, the hotspot owners
generally have no incentive for upgrading hardware and service. M3) Limited
access: Traditional WiFi hotspots do not offer a universal service for everyone.
To be associated with a hotspot service, a user should be ascribed to a certain
role or affiliation. The users’ access to the service hinges upon their particular
subscriptions. M4) Cumbersome procedure or high infrastructure cost: Connect-
ing to a WiFi hotspot often requires extensive manual effort, such as: searching
for SSID, entering payment details, specifying authentication settings, etc. Al-
though WLAN direct IP access or 3GPP IP access enable easy configurations,
they both rely on a heavy-cost cellular authentication infrastructure.

In this research, we envision that transferring the point of centralized trust
from hotspot and/or client to a decentralized independent party, i.e., blockchain,
enhances security of the connection and payment while simplifying the configura-
tion procedure (to address M1). SmartWiFi hotspot establishes the dependency
between the Quality of Service (QoS) and payment, which creates an incentive
for hotspot owners to deliver a high QoS (to address M2). The proposed hotspot
technology is universal and accessible, i.e., it serves all clients who have means
to pay, while also supporting unrestricted free WiFi hotspots (to address M3).
The simplified configuration procedures offer a full automation of handshake,
connection control, and checkout using the enforced execution of smart con-
tract protocols without relying on complex server-based or cloud authentication
infrastructure (to address M4).



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 3

Key Challenges. Designing a universal smart contract-enabled WiFi hotspot
involves three major challenges. First, blockchain execution incurs significant
processing delays, rendering the execution of many operations impossible within
reasonable time limits. Second, blockchain offers very limited data storage. Third,
blockchain networks charge considerable fees for executing block-modifying op-
erations, e.g., payment transactions, smart contract deployments, smart contract
state transitions, etc.

In this paper, we present SmartWiFi, the first operational smart contract-
enabled WiFi hotspot with automated cross-domain authentication. SmartWiFi
leverages a novel off-chain protocol called Hash Chain-based Network Connec-
tivity Satisfaction Acknowledgement (Hansa1) to manage secure and reliable
connection. An off-chain protocol establishes communication between two en-
tities using blockchain, but executes without any interaction with blockchain,
which allows Hansa to enable a fast, low-cost, and low-overhead provider-client
interaction with significant reduction of blockchain delays and fees. In addition,
we present DupSet, a Dynamic User-Perceived Speed Estimation Technique,
which reliably estimates the speed of Internet connection for client-side QoS con-
trol. Leveraging these novel techniques, we design and implement SmartWiFi
desktop and mobile apps using a smart contract executed by an Ethereum Vir-
tual Machine (EVM). A video demonstration of the SmartWiFi app is
available at https://youtu.be/jrDl204fGso. The source code of the
SmartWiFi smart contract is available at https://bit.ly/2X5a4ez.

This paper makes the following main contributions.

– Protocol Design. To build SmartWiFi, we propose Hansa, a novel cryp-
tographic scheme that provides cross-domain authentication and establishes
a smart contract-enabled off-chain session arrangement for a hotspot and
a client. It provides a fast and low-cost smart contract execution by re-
stricting blockchain transaction delays and fees. We also design DupSet to
quantify the QoS of Internet access provided by SmartWiFi hotspots to
clients. DupSet allows SmartWiFi clients to perform low-overhead band-
width estimation to measure the quality of Internet connection.

– System Implementation. We implement operational prototypes of Smart-
WiFi router and client that use Ethereum blockchain as a smart contract
platform. Both components are cross-platform, hardware-agnostic, and can
be easily deployed into existing infrastructure. In addition, we implement a
fully-functional SmartWiFi Android app, demonstrating the feasibility of
deploying SmartWiFi on non-rooted mobile platforms.

– Experimental Evaluation. We rigorously evaluate the delays, blockchain
fees, and communication overhead of SmartWiFi on Ropsten and Mainnet
Ethereum networks. We also scrutinize the DupSet technique by juxtapos-
ing its measurements with the results from nine popular bandwidth mea-
surement services. Furthermore, we evaluate the scalability of SmartWiFi

1 The name is inspired by the Hansa Trade League, which successfully operated under
the power of mutual trust for over a century in a turbulent political and economic
environment of Medieval Europe.

https://youtu.be/jrDl204fGso
https://bit.ly/2X5a4ez


4 N. Ivanov et al.

by demonstrating the stability of the system under the load of more than
100 simultaneous client processes connected to a single SmartWiFi router.

2 Background and Key Insights

2.1 Blockchain and Smart Contracts

Formally, blockchain is a distributed abstract data structure (ADS) represented
by a list of objects (blocks), which are cryptographically linked in such a way
that a modification of any block would require a chain recalculation (valida-
tion) of all subsequent blocks in the list. Consequently, any block-modifying
operation, except append, draws a considerable execution time complexity. The
block validation speed is deliberately throttled in the proof-of-work (PoW) con-
sensus protocol employed by Ethereum, Bitcoin, and some other blockchains,
making retrospective modifications of these blockchains nearly impossible. Prac-
tically, the term blockchain is used to refer to one of many peer-to-peer (P2P)
networks that store, synchronize, and cross-validate their respective blockchain
data structures. A smart contract is a distributed deterministic application, de-
ployed on blockchain, and individually executed by the blockchain participants,
with any associated data and results being part of the consensus. Therefore,
smart contracts can establish, execute, and unequivocally enforce protocols and
agreements between parties.

2.2 Threat Model

We consider a threat model with both malicious clients and malicious hotspots.
Malicious clients would attempt to obtain Internet access without payment,
which is regarded as free-rider attack. They could also try to bring significant per-
formance degradation or complete shutdown of the hotspot. Malicious hotspots,
on the other hand, aim to get payment from the clients without providing suffi-
cient QoS.

We assume that hotspots and clients have no knowledge regarding their re-
spective identities, and they have no pre-established trust. Moreover, the blockchain,
smart contract, and its underlying cryptography are considered secure and trusted
by hotspots and clients, i.e., we do not consider a wide range of attacks towards
blockchain [12] and smart contracts [25].

2.3 Overview of Key Insights

Recognizing the shortcomings of existing WiFi hotspots, we bring forth a set of
key insights that lead to the design of SmartWiFi.

Off-Chain Interaction. High delays and fees in blockchain networks make it
impossible to query the blockchain frequently for trust renewal. The idea of off-
chain interaction, in which a smart contract is used by two or more parties as a



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 5

guarantor of a protocol, but not as an executor of this protocol, has been pro-
posed for fast and cheap payments [21,16]. We extend this idea to WiFi hotspots
by limiting the blockchain interaction to only handshake (session initiation) and
payment resolution (session conclusion).

Cryptographic Satisfaction Acknowledgement. One of the key design goals
of SmartWiFi is to develop a protocol that would deliver a tamper-proof testi-
mony of Internet usage time to the smart contract. The traditional approach is
based on connection time and data size measurements performed by the provider
itself, which relies on the assumption of its trustworthiness. However, a more
comprehensive Internet traffic accounting is needed to ensure proper mutual
agreement and non-repudiation. We design such a scheme using periodic crypto-
graphically verifiable acknowledgements sent by the client to the hotspot. Each
next acknowledgement testifies the client’s satisfaction in the quality of the Inter-
net connection during a short period of time since the previous acknowledgement,
which we call a session unit. Each acknowledgement can be cryptographically
verified by the smart contract and exchanged for funds reserved in the contract.

Hash Chain Data Compression. The cryptographically verifiable acknowl-
edgements need to be stored in the smart contract, resulting in fees and con-
sumption of computational time. Our key insight is to represent the set of ac-
knowledgements by a hash chain, which can be generated from one random seed,
and the verification of each acknowledgement will only require the head of the
hash chain. Therefore, the smart contract only needs to store one hash value, i.e.,
the hash chain head, to verify a series of acknowledgements. We use hash chain
based arrangement instead of signatures to eliminate the need to constantly
use the private key by the client, which makes SmartWiFi a safer option for
unattended IoT devices.

Dynamic Speed Measurement. The satisfaction acknowledgement based
protocol stipulates that the client evaluates the satisfiability of the Internet
connection prior to sending an acknowledgement. Aiming for a fully-automated
solution, we quantify the quality of the Internet connection using a dynamic
speed measurement technique. Existing bandwidth estimation approaches re-
quire the transfer of a large amount of data, while we aim for frequent, fast, and
low-overhead speed probes. Here, we simulate Internet activities using a set of
HTTP servers deployed globally. The concept of measuring the speed of deliver-
ing an average web page, rather than consuming the available bandwidth, creates
the possibility for frequent and low-overhead speed probes emulating actual user
experience.

3 The SmartWiFi System

In this section, we present the design of the SmartWiFi system. Unlike tra-
ditional WiFi hotspots, SmartWiFi is a universal infrastructure that supports
cross-domain authentication, i.e., anyone can use SmartWiFi as a client or as
a hotspot, while the smart contracts authenticate the users by their Eithereum
account (generated offline and stored by user). In this work, we use Ethereum



6 N. Ivanov et al.

WiFi HotspotInternet-connected Device 

with Digital Wallet
Client with Digital Wallet

1 2

3 4

7

5

SmartWiFi Hotspot

Ethereum Smart 

Contracts

SmartWiFi Client

6

8

Fig. 1: SmartWiFi workflow: ¬ an Internet-connected device (router) provides
SmartWiFi hotspot service; ­ the client connects to the hotspot and sends it a
hash chain head and its public address; ® router provides a grace-period Internet
access to the client and stores the public address in the smart contract; ¯ client
funds the smart contract; ° router activates unrestricted Internet access for
the client; ± client periodically sends the router satisfaction acknowledgements
(links of hash chain); ² router claims payment from the smart contract using
the last acknowledgement; ³ client is refunded by smart contract. The dashed
lines represent the Hansa protocol communications.

as the target platform due to its relative maturity and wide popularity. Figure 1
depicts the basic building blocks of the SmartWiFi system, which consists of
six major components: SmartWiFi router, the router’s Ethereum wallet, the
hotspot managed by the router, the client, the client’s Ethereum wallet, and the
smart contract.

SmartWiFi is enabled by three main ingredients: the Hansa protocol, the
DupSet speed measurement, and the smart contract. The Hansa protocol es-
tablishes and maintains an Internet connection, and it includes two major ses-
sions: handshake and service. Payment and refund are processed after the client-
router connection terminates. While handshake, payment, and refund require
interaction with blockchain, the service session is executed off-chain. DupSet
is a speed measurement technique that allows the clients to quantify their QoS
satisfaction and continuously monitor the Internet access quality of SmartWiFi.
The smart contract is designed to process the payment and refund.

3.1 SmartWiFi Setup

SmartWiFi uses a smart contract to serve as an intermediate trust layer to
hold/release the payment and enforce fair behavior between the router and the
client. SmartWiFi also uses the router’s firewall policy to control the clients’
access privilege. The hotspot initiates SmartWiFi service after the router per-
forms the following steps: (1) SmartWiFi router deploys several reusable smart
contracts, the number of which equals the maximum number of concurrently-
served clients; (2) the router establishes a two-way communication channel with
every user; (3) the router activates a default firewall policy that allows every
client to have a restricted access to required services, such as the blockchain



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 7

API. We define the service period as the period the client is connected to the
Internet via a SmartWiFi router, and the service unit as the minimum service
period that the client will be charged for.

3.2 Hansa Handshake Session

In Hansa handshake session, the router and the client establish a relationship
regulated and protected by the smart contract. Hansa protocol begins when
the client connects to the hotspot and establishes a TCP connection with the
SmartWiFi router. The router replies with a greeting message, and the client
generates a hash chain Υ using a random secret seed Υ0. The length of the
hash chain, denoted as |Υ |, is calculated as |Υ | = T

η , where T is the length of
the service period, and η is the length of the service unit. For instance, in our
prototype, the length of the service period is 3,600 seconds, and the length of
the service unit is 60 seconds, i.e., one Hansa session serves a connection up to
1 hour in length with per-minute acknowledgements.

The client keeps the seed of the hash chain in secret and sends the head
of the hash chain Υhead and the public address Apub to the router. The router
then prepares the smart contract by storing the public key of the client’s public
address and the head of the hash chain in the smart contract. After that, the
router replies to the client with the address of the smart contract. Before ex-
ecuting prepayment, the client verifies the bytecode of the smart contract and
the price per service unit ξ, which is hard-coded in the smart contract. Then,
the client prepays the smart contract with the amount of cryptocurrency Ξ that
corresponds to the cost of the entire service period, i.e., Ξ = ξ× T

η . Once the pre-
payment is processed by the blockchain, the client and router enter the Hansa
service session. If the price is unacceptable, the client terminates the connection.

Υ0Υ1=H(Υ0)Υhead=Υn=H(Υn-1)

Client picks random Υ0

Client generates Υ, |Υ| = n
Client sends Υn to router

... Υi=H(Υi-1)Υn-1=H(Υn-2)

time

Client sends Υn-1 to router

Router verifies that Υn-1∈ Υ
Client sends Υi to router

Router verifies that Υi∈ Υ ... Client disconnected
Router passively waiting

Router requests
payment using Υi

...

DISCONNECTION

Υi-1=H(Υi-2)

Missed ACK
deadline

...

Fig. 2: Hansa timeline with respect to the hash chain Υ . In this scenario, the
client disconnects after releasing acknowledgement Υi, and the acknowledgement
Υi−2 was not released. When the service session timer expires, the router uses the
last available acknowledgement Υi to request payment from the smart contract.

3.3 Hansa Service Session

The Hansa service session begins after the router verifies that the client has
funded the smart contract. Then follows the grace period, which seamlessly
switches into an unrestricted Internet access. Meanwhile, the router sends the
client a short message signifying the beginning of a service session, and both the
client and router start service session timers.



8 N. Ivanov et al.

Table 1: Summary of smart contract features required for executing Hansa.
Feature Type Access Control Security Measure

Υhead (hash chain head) variable rw-r--r-- timer
Apub (public address) variable rw-r--r-- timer

ξ (price) constant rw-r--r-- read only
T (session length) constant r--r--r-- read only
τ (refund delay) constant r--r--r-- read only

η (session unit length) constant r--r--r-- read only
balance check function r-xr-xr-x read only
Υhead-accessor function r-xr-xr-x read only
Υhead-mutator function r-xr--r-- timer
Apub-accessor function r-xr-xr-x read only
Apub-mutator function r-xr--r-- timer
prepay (fund) p-function r-xr-xr-x none

checkout function r-xr--r-- Υ -check
refund function r--r-xr-- delay (τ)

Satisfaction Acknowledgement. Traditional paid WiFi hotspots charge users
ahead of the service, and if the QoS is unacceptable, requesting refund is often
challenging. We use cryptographic satisfaction acknowledgements to allow the
client to control its service session and payment. The first service unit of a service
session is regarded as a free trial, during which the client confirms that the Inter-
net connection is active and starts measuring speed (described in Section 3.4).
Before the end of each service unit, the client confirms a satisfactory QoS by
sending to the router a satisfaction acknowledgement (the next hash in the hash
chain), as shown in Figure 2. The router verifies that the acknowledgement is
the valid hash on the hash chain, replies with an acknowledgement response, and
extends the connection for another service unit.

Hansa allows the client to pause the connection, which can happen auto-
matically as a result of a speed probe, or can be triggered manually by the user.
If the router does not receive the next acknowledgement on time, it deactivates
the Internet access for the client. During the service period, the client can re-
sume acknowledging the service, which will reactivate the Internet access, with
a maximum reactivation delay η. The service session concludes when either the
timer reaches the value T , or when the client-router connection breaks.

3.4 DupSet Speed Measurement

We present DupSet, a bandwidth estimation solution that allows SmartWiFi
clients to quantify hotspots’ QoS. SmartWiFi is designed to operate in a flexible
range of speeds and with different number of mobile or stationary users, so the
bandwidth estimation should be frequent and with low overhead. Traditional
speed evaluation methods include four metrics: capacity, available bandwidth,
TCP throughput, and bulk transfer capacity (BTC) [22]. Although these tech-
niques can provide very accurate results, they are not suitable for SmartWiFi
since they require lengthy probes and transfer of large amounts of data.



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 9

The core of DupSet is a metric called user-perceived speed, represented by
the transmission component of the throughput when loading an average web
page. Measuring the transmission component, instead of the entire end-to-end
communication, allows to achieve transparency with respect to different band-
width uses, such as video streaming services or VPN traffic. DupSet draws
probes from pre-selected servers. Unlike many traditional bandwidth services,
such as M-Lab [17] and Ookla [20], the DupSet servers do not require to deliver
high computational and throughput performance. Each probe calculates a sta-
tistical summary2 of readings from all the reachable servers from the list. Then,
the current DupSet reading is calculated using a simple moving average3.

Each DupSet server is an HTTP server with two payload files with random
information available for download. The size of the first file (P1 bytes) is much
greater than the size of the second file (P2 bytes). The client loads both the
files and calculates the difference between delays of downloading the first and
the second file, which extracts the transmission delay from the total end-to-end
delay. Then, the user-perceived speed reading (in bytes/second) for ith server

is determined as Speedi = EPF (P1−P2)
∆Di

, where EPF is the Effective Payload
Function defined as follows:

EPF (x) =


0, if x ≤ 0;

0, if request failure;

x, otherwise.
∆Di is the time in seconds needed to load the file from the server i. The
EPF function filters out unreliable results and ignores results from inacces-
sible DupSet servers, so when one or several DupSet servers are unavailable or
provide unreliable readings, the accuracy of the DupSet result is not affected.

3.5 SmartWiFi Smart Contract

The SmartWiFi smart contract provides an overarching trust layer between
the router and the client to exchange data and payments. The SmartWiFi
smart contract has the following components: a) state variables; b) state chang-
ing functions; c) cryptocurrency balance; and d) payable function (p-function)
for incoming payments. The functions that do not submit transactions (pure
and view functions) are called anonymously, whereas the calls to state changing
functions are signed by a specific user (using the account’s private key).

The minimal set of the SmartWiFi smart contract features is summarized in
Table 1, which includes constants, variables, functions, and one payable function.
The access control to each feature is represented in the Unix-style symbolic access
mode format, where the first triple refers to the router’s privilege, the second
triple is for user’s privilege, and the third one is for others. The security column
describes protective measures employed for each feature.

2 We experimentally found that the third quartile statistic achieves a better measure-
ment accuracy compared to mean, median, and maximum.

3 We empirically determine that simple moving average over 6 periods (SMA-6) de-
livers stable and reliable results.



10 N. Ivanov et al.

Algorithm 1 Smart contract payment routine

INPUT: Υhead, Υi, ξ, t, T , η, Apub
OUTPUT: none
1: if Υi ∈ Υ and caller = Router and T imestamp ≥ t+ T then
2: RouterBalance← i× ξ
3: RefundAmount← (T

η
− i)× ξ

4: TransferFunds(Apub, RefundAmount)
5: end if
6: return

The price ξ, session length T , refund delay τ , and service unit length η are
set as constants to reduce execution delays and fees. The smart contract has
two variables for hash chain head Υhead and client public address Apub; they
can only be set by the router using their mutators. The accessor and balance
check functions are called without fees since they do not modify the blockchain.
Both the mutators use timers to prevent the modification of the values they set.
The values are protected using a timer for at least the duration of a Hansa
session, including handshake, service session, and checkout. The timer plays two
important roles: first, it prevents a malicious modification of Υhead and Apub by
the router; second, it facilitates the reuse of the smart contract, thereby reducing
blockchain fees and delays. The prepay function funds the smart contract. The
checkout and refund functions include additional security checks as depicted in
Algorithms 1 and 2, which will be described next.

3.6 Payment and Refund

The fair payment and refund procedures are automatically enforced by the
SmartWiFi smart contract. The smart contract holds the amount of cryptocur-
rency Ξ, sufficient for funding one Hansa session. The router is prohibited from
claiming its payment until the blockchain timestamp reaches the value t + T ,
where t is the saved timestamp at the beginning of the service session. Algo-
rithm 1 shows how the payment is executed. The inputs include: the hash chain
head Υhead, last retrieved acknowledgement Υi, price ξ (stored as a constant in
smart contract), timestamp t (saved during handshake), service session length T
(constant), session unit length η, and the user’s public address Apub. The router
obtains the payment based on the depth of Υi, and the remaining funds are
transferred back to the client as a refund.

The execution of lines 2-4 in Algorithm 1 can only be triggered by the router.
In case when the router does not request any payment, the client may never re-
ceive any refund, for which case we design an additional refund routine, described
in Algorithm 2. The execution of the actual refund (lines 2–3) is permitted only
by the client after the pre-determined refund delay τ , which prevents refund
before payment described in Section 4.



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 11

Algorithm 2 Smart contract refund routine

INPUT: Υhead, ξ, t, T , η, τ , Apub
OUTPUT: none
1: if caller.address = Apub and T imestamp ≥ t+ T + τ then
2: RefundAmount← T

η
× ξ

3: TransferFunds(Apub, RefundAmount)
4: end if
5: return

4 Security Analysis

The security threats of SmartWiFi come either from malicious clients or from
malicious hotspots/routers. In this section, we analyze the security of SmartWiFi.

Non-Service by Malicious Hotspot. The goal of the client is to have a sat-
isfying Internet connection for the money paid. If the high-quality service is not
provided, full or partial refund should be guaranteed. A malicious router might
refuse a service, i.e., to receive a payment without providing a quality connection.
To counteract such a behavior, the SmartWiFi client uses DupSet to assess the
quality of Internet connection before sending each subsequent acknowledgement,
while the SmartWiFi smart contract guarantees a full or partial refund.

Refund before Payment. The router expects to be fairly paid after the con-
nection period is over. The goal of the client, who prepaid the smart contract
with one whole period worth of money, is to receive a refund for all service units
that do not result in satisfaction acknowledgement. Refund before payment in-
dicates the case when a malicious client claims no service received and asks for
a full refund. In SmartWiFi, this threat is prevented by the refund delay τ for
the router to claim payment, during which the refund is impossible.

Handshake Flooding. The handshake of SmartWiFi is prone to denial-of-
service attacks. The goal of the adversary in the handshake flooding attack is to
render the router unavailable or degrade its performance. This can be achieved
by initiating multiple incomplete handshakes, in which the attacker, pretending
to be a valid client, forces the router to submit values to the smart contract, for
which the blockchain charges fees. In SmartWiFi, this attack is prevented by
checking the balance of the client before preparing the smart contract for that
client. SmartWiFi router also curbs the number of clients to serve: once the
number of requests exceeds the maximum, SmartWiFi starts dropping requests.

Free-Rider Attack (Non-Payment). The existence of the free trial in Smart-
WiFi allows any user who funds the contract to gain one service unit of Internet
connectivity without providing an acknowledgement. A dedicated attacker may
use multiple client devices to interchangeably connect to the router, use the
free trial period (1 minute in this paper), disconnect without providing any
acknowledgements, tunnel the traffic to the same outlet, and then request a full
refund. We define such connection misuse as traffic hopping, which is a special



12 N. Ivanov et al.

(a) (b)

Fig. 3: SmartWiFi prototype: (a) The connection page of the SmartWiFi An-
droid app; (b) SmartWiFi configuration with a wired Internet connection, Rasp-
berry Pi as a SmartWiFi router, retail WiFi router with factory software, and
Android smartphone as a SmartWiFi client.

case of the free-rider attack. In SmartWiFi, we prevent such threats by relying
on the accruing blockchain fees. As the creation of new malicious nodes (i.e.,
Sybil nodes) will require the attacker to transfer funds into multiple accounts
and pay fees for each funding transaction, such fees, after being summed up
from multiple accounts, will nullify the benefits of the free riding. After the free
trial, the router expects to receive regular satisfaction acknowledgements. Each
acknowledgement from a client is expected to arrive before a strict deadline,
otherwise, the Internet connection will be terminated by the router.

5 Implementation

We implement a fully-functional SmartWiFi prototype on a Netgear router
and Raspberry Pi clients for testing the general functionality and performance
of the system. In addition, we implement an Android SmartWiFi client app,
as shown in Figure 3(a), for testing the performance of SmartWiFi on mobile
devices. The client app can be easily ported to iOS. We use Java 11 and Web3j
for implementing the software of the router, the desktop/IoT client, and the
Android client. We use Infura API [6] to interact with Ethereum blockchain.

Figure 3(b) shows one possible configuration of SmartWiFi, in which Smart-
WiFi router software is installed on Raspberry Pi with two Ethernet interfaces:
one for Internet connection, another for delivering the Internet to the WiFi
router. The retail WiFi router runs its original software; the configuration of this
router includes TCP port 5566 forwarding in order to allow connected devices
to access the SmartWiFi router. The client in this configuration is an ordinary
Android smartphone without rooting. This configuration ensures SmartWiFi’s



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 13

compatibility with legacy systems, i.e., we can easily deploy SmartWiFi by
plugging in a device running SmartWiFi router software.

We implement a prototype SmartWiFi Ethereum smart contract using So-
lidity programming language. In our prototype and evaluation, we use both
Mainnet and Ropsten testnet for executing the smart contracts. Furthermore,
we build an IoT testbed with five Raspberry Pi clients simultaneously connected
to a single-antenna all-in-one SmartWiFi router (AMD A4 Micro-6400T, 4GB
RAM, Xubuntu 18.04). This setup demonstrates that SmartWiFi can be easily
adapted to support a diverse variety of IoT configurations.

6 Evaluation

We thoroughly evaluate the performance of the SmartWiFi prototype by scruti-
nizing the following system parameters under different circumstances: blockchain-
related delays, Ethereum gas fees, smart contract storage, the accuracy of DupSet
speed probes, the scalability of the system, and the communication overhead. In
Ethereum, all blockchain-modifying transactions require the caller to pay fees
measured in the unit named gas, which is convertible into Ether using a dynamic
variable called gas price. In our evaluation, the service session lasts for one hour
(T = 3, 600 seconds), and the service unit is one minute (η = 60 seconds).

6.1 Delays

In this section, we evaluate the blockchain-related delays of SmartWiFi sessions
in both Mainnet and Ropsten Ethereum networks. We add the Ropsten testnet
for comparison to demonstrate the performance stability of SmartWiFi under
Ethereum networks with different amounts of mining hash power. Thus, we
show that if the parameters of the blockchain change in the future, it will not
significantly affect the performance of SmartWiFi. For each type of blockchain-
related delays, ten measurements have been taken. The average delays (with
standard deviations) for Ropsten and Mainnet are presented in Table 2, from
which we observe similar delays in both the networks.

The connection initiation phase, in which no blockchain interaction occurs,
takes a few seconds on average; after this phase the user can start accessing the
Internet. The handshake phase, whose average delay is below one minute for
both Ropsten and Mainnet, initiates the payment arrangement. The code check
phase, which requires only a non-modifying blockchain operation, also takes a
few seconds in delay. The smart contract funding phase is essentially a cryptocur-
rency transaction, which requires more time than a read-only blockchain request.
Similarly, payment and refund routines, although demanding additional calcu-
lations and checks, demonstrate delays just a little longer than a simple Ether
transfer. In summary, to connect to a SmartWiFi router and start Internet
access, the client only experiences a few seconds of connection initiation delay,
which is completely acceptable.

The delay of blockchain execution in the Ethereum network can be further
reduced by increasing the gas price offered for a transaction [13]. However, such a



14 N. Ivanov et al.

Table 2: Comparison of blockchain-related average delays (in seconds) with rel-
atively high gas price (100 GWei for Ropsten and 5 GWei for Mainnet).

Delay Type
Ropsten Testnet Ethereum Mainnet
davg σ davg σ

Connection initiation 3.965 0.177 4.161 0.202

Handshake 39.093 18.504 53.161 16.432

Bytecode verification 4.268 0.376 4.291 0.360

Funding 23.629 17.711 25.449 14.519

Payment 30.729 23.208 31.512 17.304

Refund 33.194 23.640 37.521 23.006

1.000 125.875 250.750 375.625 500.500

Gas Price (GWei)

80

100

120

140

160

180

200

220

S
e

s
s

io
n

 d
e

la
y

 (
s

e
c

o
n

d
s

)

Fig. 4: Full session delays with different gas prices in Ropsten network. The
graph has a logarithmic Gas price axis, and it shows that while it is empirically
true that offering more gas increases the chance of faster transaction, the speed
improvement is insignificant.

performance optimization is not guaranteed [24]. First, the Ethereum blockchain
protocol does not enforce the prioritization of incoming transactions, leaving
this decision to the discretion of miners. Second, since Ethereum is a decentral-
ized network, the increase of transaction execution speed adopts a best-effort
approach. Here, we conduct an empirical testing to evaluate the delays with
respect to different gas prices, the result of which, presented in Figure 4, demon-
strates a slight but consistent reduction of total SmartWiFi session delays as
the gas price increases, which shows the possibility of reducing delays by offering
a higher gas price. However, given the increasing cost, the delay reduction may
not be worthwhile.

6.2 Fees

In this section, we measure the gas fees per transaction when a public function
of the SmartWiFi smart contract is called. In order to exclude the possibility



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 15

Table 3: Gas fees for different functions of the SmartWiFi smart contract. Since
SmartWiFi uses an off-chain execution protocol with infrequent smart contract
transactions, the resulting fee overhead drops significantly.

Function
Transaction fee with recommended gas price [2]

Gas Approx. USD

Apub-accessor 0 0

Apub-mutator 28,366 0.11

Υhead-accessor 0 0

Υhead-mutator 33,684 0.13

Balance check 0 0

Payment 50,076 0.20

Refund 42,266 0.17

Fund contract 21,040 0.08

Download contract bytecode 0 0

of variable fees, we take every measurement twice, and confirm that the cost
remains the same for both measurements. The summary of gas fees is presented
in Table 3. The address accessor, hash chain head accessor, balance check, and
bytecode download are read-only blockchain operations, which do not incur any
fees. However, the mutators and payable functions require the caller to pay fees.
The fees in Table 3 are calculated for one 60-minute service session, with 1-
minute service units.

Ethereum allows the issuer of a transaction to offer an arbitrary gas price to
prioritize the transaction. Similar to the delay-measuring experiment in Figure 4,
we record fees over 10 measurements on Ropsten network for a more realistic
10 gas prices equally spread across the interval between 0.5 and 5.0 GWei. The
cumulative fee (for both router and client) is less than $0.4, even with the highest
gas price and ETH market price. Since the highest gas price is used rarely in
production systems, the fee overhead is expected to be significantly lower then
the maximum.

It is important to note that the cryptocurrency market price variations have
little effect on SmartWiFi fee overhead. Ethereum is a dynamic self-regulating
system, so when the market price of Ether goes up, the users can afford less,
and they offer smaller fees for transactions, which results in lower average gas
price, and vice versa [13]. The curve of resulting fee in USD is thus smoothed
and flattened. Therefore, regardless of any cryptocurrency price fluctuations,
SmartWiFi blockchain fees paid in USD will remain approximately the same.

6.3 Smart Contract Storage

Table 4 shows a comparison between data stored in the SmartWiFi smart con-
tract with and without hash chain compression, from which we can see that
the hash chain in Hansa stores about 17 times less data in the smart contract,
effectively reducing per-session delays. Moreover, it also reduces per-session fees



16 N. Ivanov et al.

from $8 to about 40¢ in USD equivalent, which corroborates the feasibility of
SmartWiFi in terms of low cost.

Table 4: Data stored in the smart contract per session (T = 3, 600, η = 60).

Data Unit
Stored data per session

With hash chain Without hash chain

Acknowledgement data 32 bytes 1,920 bytes

Client identity 20 bytes 20 bytes

Auxiliary data 64 bytes 64 bytes

Total 116 bytes 2,004 bytes

6.4 DupSet Measurement and Overhead

In this section, we evaluate the feasibility of DupSet by comparing our estima-
tions with the average readings obtained from nine popular Internet speed mea-
surement services, specifically: Bandwidth Place, DSLReports, Fast.com, Google
Fiber, Internet Health Test, M-Lab, Ookla, Speed-Of.Me, and Xfinity. We test
ten different SmartWiFi router Internet connections belonging to different speed
tiers, and evaluate average speeds of each of these connections by taking six speed
test probes at each of the nine services listed above. The six speed test probes
consist of three probes per service before running the DupSet simulation, and
three probes per service right after the DupSet simulation.

In our prototype setup, we deploy ten DupSet servers in different geographic
locations. In order to achieve further diversity in measurements, we use servers
provided by two different cloud services, DigitalOcean [5] and Vultr [15]. For each
Internet connection, we run 60 probes of DupSet for measuring the transmission
speed component from each of the servers based on the payload of 10 kilobytes.
The fastest reading from the ten servers represents the speed result of a probe.

The experiment confirms that the low-overhead DupSet estimations corre-
late with the high-overhead traditional Internet speed readings. Figure 5 shows
that DupSet speed measurement results accurately reflect the Internet connec-
tion speed tier, which quantifies the QoS of user service. The spiked increase in
the gap between the two readings at high speeds demonstrates the core difference
between traditional bandwidth measurements and user-perceived speed estima-
tion: a drastic increase in available bandwidth after a certain threshold does not
trigger a proportional boost in loading web pages. In a high-speed Internet, the
performance bottleneck moves from the client to the server.

The overall maximum communication overhead of DupSet probes depends
on the number of DupSet servers and the size of payload on any of these servers.
In our prototype, we empirically select a 10-kilobyte DupSet payload and 10
DupSet servers, resulting in 100-kilobyte maximum overhead per probe, or ap-
proximately 6 Mb of overhead per one-hour session. Through this experiment,
we demonstrate that DupSet probes reflect accurate user-perceived speed with
low overhead.



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 17

TC
P V

PN
 1

TC
P V

PN
 2

LT
E M

od
em

TC
P V

PN
 3

U
D
P V

PN
 1

Edu
ro

am
 W

iF
i

C
ab

le
 M

od
em

G
ig
ab

it-
N
AT-W

iF
i 5

G
H
z

U
D
P V

PN
 2

G
ig
ab

it 
Eth

er
ne

t

Internet connection profile

0

100

200

300

400

500

600

700

M
e

a
s

u
re

d
 d

o
w

n
li

n
k

 s
p

e
e

d
 (

M
b

p
s

)

DupSet

Speed measurement websites

Fig. 5: Correlation
between traditional
Internet speed measure-
ment (average result
from nine websites) and
DupSet probes over
10 different Internet
connection profiles.

0.
06

25

0.
12

5
0.

25 0.
5 1 2 4 8 16 32 64 12

8
25

6
51

2

10
24

User-perceived speed limit based on DupSet (Mbps)

0

50

100

150

200

250

300

M
a
x
. 
n

u
m

b
e
r 

o
f 

s
im

u
lt

a
n

e
o

u
s
 c

li
e
n

ts

Ethernet, 100 Mbps

LTE, 52 Mbps

VPN, 28 Mbps

Tor, 6 Mbps

Fig. 6: Maximum num-
ber of clients simulta-
neously served by the
router for 15 minutes
under different Internet
connectivities, with ran-
dom web surfing simula-
tion in the background.

10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

17
0

18
0

19
0

20
0

21
0

22
0

23
0

24
0

25
0

Number of simultaneously connected clients

0

1

2

3

4

5

6

7

8

A
v

e
ra

g
e

 D
u

p
S

e
t 

s
p

e
e

d
 (

M
b

p
s

) Gigabit Ethernet

Cable Modem, 100 Mbps

LTE Modem, ~50 Mbps

Fig. 7: Average DupSet
readings for different
types of Internet con-
nection profiles with
different number of
clients simultaneously
served by a SmartWiFi
router.

A SmartWiFi client uses DupSet to control minimum expected speed. Since
different users may have different minimum speed requirements at different times
(e.g, watching stream video needs higher speed than reading e-mail), it is re-
quired from the users to explicitly specify their expectations in the client settings.
In the SmartWiFi Android app, for example, we let the user choose between 5
discrete options.

6.5 Scalability

SmartWiFi is designed to scale to multiple clients connecting to a single router.
We evaluate the performance of the system under the load of different numbers
of users. For each client, we perform a background web surfing simulation that
picks and loads a random website from the Alexa Top 10K list [11] every 10
seconds. Figure 6 shows the number of clients one router could serve without
disconnection. As we can see, this capacity depends on the bandwidth of the In-
ternet connection of the router and the maximum expected Internet speed set by
the client. The experiment shows that when the router has a high-bandwidth In-
ternet connection, and clients do not request high speed, SmartWiFi is capable
of serving hundreds of clients simultaneously4.

Figure 7 shows average DupSet readings for different Internet connections
with different number of simultaneously served clients under a background web
surfing simulation. The graph shows the number of clients one SmartWiFi
router can serve based on its Internet connection bandwidth and average speed
expectations. For example, it will be overly ambitious for a SmartWiFi router
with 100 Mbps connection to serve 40 users whose average speed expectation

4 The growing number of users incurs higher rate of physical layer packet collisions.
One way to mitigate this is to use MIMO WiFi access point hardware.



18 N. Ivanov et al.

is 2 Mbps. However, if the expectation is reduced to 1 Mbps, serving 40 users
simultaneously will likely be a realistic projection.

6.6 SmartWiFi Communication Overhead

The communication overhead includes the client-router TCP traffic and the In-
fura blockchain API communication. We measure overhead by capturing network
traffic and calculating a cumulative one-hour session TCP payload using Wire-
shark. Each session’s average result is based on 10 measurements. The results
in Table 5 demonstrate that the overhead of off-chain communication is low
compared to the results for blockchain-related calls.

Table 5: Session communication overhead for different SmartWiFi calls over
10 measurements. The local calls represent off-chain communication between
the hotspot and the client, including handshake Eh, connection initiation Ec,
connection status check Es, and acknowledgement Ea. Blockchain (B/C) calls
use Infura API [6].

Procedure Call Avg TCP Payload (bytes) σ

Local: Eh 580 20

Local: Ec 412 0

Local: Es 274 9

Local: Ea 334 8

B/C: download bytecode 69,797 32,633

B/C: Apub-accessor 51,597 38,224

B/C: Apub-mutator 51,279 34,389

B/C: Υhead-accessor 50,472 33,205

B/C: Υhead-mutator 60,606 36,489

B/C: balance check 64,487 46,150

B/C: payment 45,326 28,016

B/C: refund 59,500 41,856

B/C: fund contract 56,834 39,542

7 Related Work

Traditional WiFi Hotspot Solutions. Current non-blockchain WiFi hotspot
solutions are represented either by manual setups, or cloud-managed subscription-
based proprietary products, such as Cisco Meraki [3], Aruba [4], Ruckus [9], etc.
However, none of these approaches addresses the set of objectives achieved by
SmartWiFi, namely: a) enhancing hotspot security against malicious routers
and clients; b) providing universal authentication and billing; and c) making
payment based on service quality.

Blockchain Solutions. The most relevant work to SmartWiFi is a use case
in OPPay [23], a peer-to-peer opportunistic data service system. However, the
OPPay-based solution is impractical for a WiFi hotspot, as it incurs high fees



SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot 19

and does not offer QoS measurement for sustaining a reliable service. A com-
mercial project WinQ [10] has been in development since 2016. Advertised as a
blockchain-enabled mobile WiFi hotspot, the solution was intended to operate
on its own blockchain called QLC Chain [8]. We installed both the Android and
iOS apps to discover that the system is activated only on testnet blockchain,
which was practically unavailable.

Dynamic Speed Evaluation. QDASH was proposed for dynamic speed mea-
surement [18], which is based on the assumption that the user traffic is avail-
able to the client connection handler. This requirement makes QDASH and its
derivatives unsuitable for use by SmartWiFi clients. Xylophone [26] observes
the behavior of TCP ACK and RST packets for speed measurement. Although
the technique accurately estimates the bandwidth, it requires extended permis-
sions for the client to capture TCP packets, which are usually not available on
Android and iOS without rooting/jailbreaking.

8 Conclusion

In this paper, we proposed SmartWiFi, a smart contract-enabled WiFi hotspot
system, which provides universal accessibility, cross-domain authentication, as-
sociation of QoS and payment, and security enhancement. SmartWiFi utilizes
a novel cryptographic mechanism, Hansa, to establish connection. Hansa pro-
vides low-cost off-chain execution by restricting otherwise unacceptable smart
contract fees, and significantly reduces delays associated with smart contract
interaction. To validate the feasibility of SmartWiFi system, we designed and
implemented a SmartWiFi prototype using an Ethereum smart contract. The
experimental results show that SmartWiFi exhibits low operational delays, min-
imum communication overhead, and small blockchain fees. We demonstrated
that SmartWiFi is a scalable, secure, and efficient WiFi hotspot solution, which
can be easily deployed in a variety of systems with minimal intervention. The
limited adoption of cryptocurrencies and the volatility of their market prices can
be further addressed through the use of stablecoin tokens, which we leave for
future work.

Acknowledgement

We would like to thank the anonymous reviewers for providing valuable feedback
on our work. This work was supported in part by National Science Foundation
grants CNS1950171 and CNS-1949753.

References

1. eduroam - World Wide Education Roaming for Research & Education.
https://www.eduroam.org/, accessed: 2020-05-10

2. ETH Gas Station. https://ethgasstation.info/, accessed: 2020-05-17
3. Cisco meraki for sp public wifi. http://marketo.meraki.com/rs/010-KNZ-501/

images/Meraki for SP Public WiFi.pdf (2019), accessed: 2020-04-03

http://marketo.meraki.com/rs/010-KNZ-501/images/Meraki_for_SP_Public_WiFi.pdf
http://marketo.meraki.com/rs/010-KNZ-501/images/Meraki_for_SP_Public_WiFi.pdf


20 N. Ivanov et al.

4. Cloud managed networking. https://www.arubanetworks.com/solutions/
cloud-managed/ (2019), accessed: 2020-04-10

5. Digitalocean. https://www.digitalocean.com (2019), accessed: 2020-04-03
6. Infura: Scalable blockchain infrastructure. https://github.com/INFURA (2019),

accessed: 2020-04-03
7. Passpoint. https://www.wi-fi.org/discover-wi-fi/passpoint (2019), accessed: 2020-

04-03
8. Qlc chain. https://medium.com/qlc-chain/chain/home (2019), accessed: 2020-04-

03
9. Ruckus cloud wi-fi. https://www.ruckuswireless.com/products/

system-management-control/cloud-wifi (2019), accessed: 2020-04-03
10. Winq. https://winq.net/ (2019), accessed: 2020-04-03
11. Amazon Web Services, I.: Alexa top sites. https://docs.aws.amazon.com/

AlexaTopSites/latest/MakingRequestsChapter.html (2019), accessed: 2020-04-03
12. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: Sok:

Research perspectives and challenges for bitcoin and cryptocurrencies. In: 2015
IEEE Symposium on Security and Privacy. pp. 104–121 (2015)

13. Buterin, V.: A next-generation smart contract and decentralized application plat-
form. white paper (2014)

14. Chiang, M.: Networked Life: 20 Questions and Answers, chap. How WiFi is different
from cellular, pp. 406–409. Cambridge University Press (2012)

15. Corporation, V.H.: Vultr. https://www.vultr.com (2019), accessed: 2020-04-03
16. Eberhardt, J., Tai, S.: On or off the blockchain? insights on off-chaining computa-

tion and data. In: European Conference on Service-Oriented and Cloud Computing.
pp. 3–15. Springer (2017)

17. M-Lab: Measurement lab speed test. https://speed.measurementlab.net (2019),
accessed: 2020-04-03

18. Mok, R.K., Luo, X., Chan, E.W., Chang, R.K.: Qdash: a qoe-aware dash system.
In: Proceedings of the 3rd Multimedia Systems Conference. pp. 11–22 (2012)

19. Molisch, A.F.: Wireless Communications. Second Edition, chap. 1, p. 14. John
Wiley & Sons (2011)

20. Ookla, L.: Ookla lab speed test. https://www.speedtest.net (2019), accessed: 2020-
04-03

21. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable off-chain instant pay-
ments (2016)

22. Prasad, R., Dovrolis, C., Murray, M., Claffy, K.: Bandwidth estimation: metrics,
measurement techniques, and tools. IEEE network 17(6), 27–35 (2003)

23. Shi, F., Qin, Z., McCann, J.A.: Oppay: Design and implementation of a payment
system for opportunistic data services. In: 2017 IEEE 37th International Confer-
ence on Distributed Computing Systems (ICDCS). pp. 1618–1628 (2017)

24. Signer, C.: Gas Cost Analysis for Ethereum Smart Contracts. Master’s thesis, ETH
Zurich, Department of Computer Science (2018)

25. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: Practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security. pp. 67–82
(2018)

26. Xing, X., Dang, J., Mishra, S., Liu, X.: A highly scalable bandwidth estimation
of commercial hotspot access points. In: 2011 Proceedings IEEE INFOCOM. pp.
1143–1151 (2011)

https://www.arubanetworks.com/solutions/cloud-managed/
https://www.arubanetworks.com/solutions/cloud-managed/
https://www.digitalocean.com
https://github.com/INFURA
https://www.wi-fi.org/discover-wi-fi/passpoint
https://medium.com/qlc-chain/chain/home
https://www.ruckuswireless.com/products/system-management-control/cloud-wifi
https://www.ruckuswireless.com/products/system-management-control/cloud-wifi
https://winq.net/
https://docs.aws.amazon.com/AlexaTopSites/latest/MakingRequestsChapter.html
https://docs.aws.amazon.com/AlexaTopSites/latest/MakingRequestsChapter.html
https://www.vultr.com
https://speed.measurementlab.net
https://www.speedtest.net

	SmartWiFi: Universal and Secure Smart Contract-Enabled WiFi Hotspot

