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Abstract. The structure-changing obfuscation has become an effective
means for malware authors to create malicious apps that can evade the
machine learning-based detection systems. Generally, a highly effective
detection system for detecting unobfuscated malware samples can lose
its effectiveness when encountering the same samples that have been
obfuscated. In this paper, we introduce Obfusifier, a highly effective
machine-learning based malware detection system that can sustain its ef-
fectiveness even when malware samples are obfuscated using complex and
composite techniques. The training of our system is based on obfuscation-
resistant features extracted from unobfuscated apps, while the classifier
retains high effectiveness for detecting obfuscated malware. Our exper-
imental evaluation shows that Obfusifier can achieve the precision,
recall, and F-measure that exceed 95% for detecting obfuscated Android
malware, well surpassing any of the previous approaches.
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1 Introduction

Code obfuscation is a common approach used by developers to help protect
the intellectual properties of their software. The goal of obfuscation is to make
code and data unreadable or hard to understand [16]. This, in effect, makes
reverse-engineering of their applications more difficult. Typically, there are three
major types of obfuscation methods: (1) trivial obfuscations, which most tools
can easily handle; (2) data-flow and control-flow obfuscations, which can be
Detectable by Static Analysis (DSA); and (3) encryption-based obfuscations,
which often involve some forms of encryption to hide the actual code and data.

Recently, various obfuscation techniques have been applied on malicious apps
to evade the security analysis. These techniques are especially effective in defeat-
ing existing malware and virus scanners, which often rely on signature matching
or program analysis. As will be shown in Section 3, we apply DSA based obfusca-
tion techniques to known malware samples and evaluate them by VirusTotal [7].
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The analysis results indicate that many existing techniques deployed by Virus-
Total cannot detect obfuscated malware samples and would indicate them as
benign.

These DSA based obfuscation techniques are effective in defeating virus scan-
ners, because they change the flow of the program by adding (e.g., junk code
insertion), reordering (e.g., code reordering, function inlining, function outlin-
ing), or redirecting code (e.g., method indirection). These code manipulations
can change the signatures of a program and complicate program analysis. In ad-
dition, these techniques also change method, variable, and class names so that
static analysis techniques that look for previously known values would fail to
locate them. Also, note that encryption-based obfuscation techniques are effec-
tive in defeating malware detectors because they “hide” the entire code-base and
data through encryption. Prior to running, these encrypted applications must be
decrypted to reveal the real codes (that may or may not have been obfuscated
using DSA techniques) and data for execution. Encryption-based obfuscation is
beyond the scope of this work.

Recently, machine learning has become widely used for Android malware
detection in the state-of-the-art systems [20, 9, 12, 24, 27, 23]. These existing sys-
tems extract features from benign and malware Android samples to build classi-
fiers to detect malware. Currently, the samples used in building classifiers are not
obfuscated. However, one recent work [25] as well as Section 3 have shown that
when obfuscated Android malware samples are submitted to these classifiers,
they can be miscategorized since the features used by these classifiers are now
more ambiguous due to obfuscation [19]. In this paper, we propose Obfusifier,
a machine-learning based malware detector that is constructed using features
from unobfuscated samples but can provide accurate and robust detection re-
sults when obfuscated samples are submitted for detection.

Our key insight is that there are portions of codes that cannot be obfuscated,
because the obfuscation of them will break the functionality. One of these por-
tions is the API invocations into the Android framework. As a result, our feature
selection focuses mainly on the usage of Android APIs. Our approach then ex-
tracts features that are related to such usage. In total, we extract 28 features
to build our classifier using 4,300 benign apps and 4,300 malware samples ob-
tained from VirusShare; these apps are not obfuscated. We then test our system
using 568 obfuscated malware. The result indicates that our system can achieve
95% precision, recall, and F-measure, corroborating the obfuscation resilience of
Obfusifier.

2 Background on Code Obfuscation

In this work, we use Alan, a Java-based code obfuscation tool for Android. Next,
we describe the obfuscation features supported by Alan. As will be discussed
in Section 5, we employed all techniques in a composite fashion to obfuscate
our malware samples to make them as challenging as possible to be detected by
Obfusifier.
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Disassembling & Reassembling. The Dalvik bytecode in the DEX file of the
Android app can be disassembled and reassembled. The arrangement of classes,
strings, methods in the DEX files can be changed in different ways. In other
words, the architecture or the arrangement of the DEX files can be modified,
and this transformation creates changes that significantly alter the structures of
the program, rendering signature-based detector ineffective.
Repackaging. Developers must sign their Android app before it is released to
the market. Cybercriminals can unzip the released Android app and repack it
via tools in the Android SDK. After repacking, hackers must sign the repackaged
app with their own keys, because they do not have the developers original keys,
this newly signed app does not have the same checksum with the original app.
This process neutralizes the effectiveness of malware detectors that compare
checksums primarily for detection.
Data Encoding. The strings and arrays in the DEX files can be used as signa-
tures to identify malicious behaviors. Encryption of strings and arrays can make
signature-based detection ineffective [14].
Code Reordering. This feature aims to change the order of the instructions
randomly, and the original execution order is preserved by inserting goto instruc-
tions. Because this reordering is random, the signature generated by this malware
would be significantly different from the signature of the original malware. This
is by far the strongest obfuscation technique for evading the signature-based
detectors [32].
Junk Code Insertion. This technique does not change the programming logic
of the code. As such, compared with other transformations, its impact towards
the detector is less significant, and malware only obfuscated with Junk Code
Insertion are very likely to be detected [17]. Three types of junk codes are in-
serted including nop instructions, unconditional jumps, and additional registers
for garbage operations.
Identifier Renaming. This transformation modifies package and class names
with random strings. It can be used to evade the signature-based detection.
Call Indirection. Some malware scanners take advantage of the structure of the
method graphs to generate signatures. The original method call can be modified
by inserting a newly and randomly generated method before calling the original
method. This transformation can insert many irrelevant nodes into the method
call graph of an obfuscated app. If a detector is relying on a signature based
on a method call graph, this obfuscation technique can be effective in evading
the detection. Furthermore, a machine learning detector based on method call
graph features would also likely fail to detect malware samples employing this
obfuscation technique.

3 Effects of Obfuscation on Malware Detection

Obfuscation techniques that can transform the structure of an application has
the potential to allow malware to evade detection of many anti-virus scanners.
To elaborate and quantify the magnitude of this phenomenon, we investigated
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the effects of obfuscations on the effectiveness of existing virus scanners. The
data collection process to conduct our experiments (described next) and the
subsequent evaluation of our proposed system is described in Section 5.

In the first experiment, we assessed the effect of obfuscation on the accuracy
of detection by about 60 scanners deployed by VirusTotal [7]. The experiment in-
volved randomly selecting 30 malware samples from VirusShare (we downloaded
them in June, 2018). We then applied obfuscation using Alan, a Java-based
code obfuscation tool which is capable of applying several types of structure-
altering transformations including code reordering, junk code insertion and call
indirection directly on DEX code of an Android app [13, 25]. Once these apps
have been obfuscated, we resubmitted them for scanning again on VirusTotal.
We report the scanning result in Figure 1.
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Fig. 1. The Difference in Detection Rate of Original and Obfuscated Malware

In the figure, the horizontal axis lists malware ID (from 1 to 30). The vertical
axis presents how many anti-virus scanners identify an app as malware. The light
blue bar is the detection number for the original app, and the red twilled bar is
the result for the obfuscated app. The number of scanners that can accurately
identify each obfuscated app as malicious decreases dramatically. The biggest
drop occurs in App 9 as its unobfuscated version was detected by 42 scanners
and its obfuscated version is only detected by 16 scanners, a reduction of 62%.

In the second experiment, we focused on the accuracy of 14 popular scan-
ners in detecting obfuscated malware. We randomly obfuscated 1,540 apps using
Alan. Table 1 shows the detection difference between these 1,540 unobfuscated
malicious apps and their obfuscated versions. The scanner Antiy-AVL can iden-
tify 1,427 as malware before obfuscation, but can only identify 260 obfuscated
versions. The difference for McAfee and Symantec is 641 before and after obfus-
cation, which is surprisingly high. Ad-Aware and Baidu cannot detect obfuscated
malware at all. We checked 60 scanners, and the number of scanners which could
still identify the obfuscated apps as malicious decreased by 34.4% on average.
Prior work called DroidChameleon [25] has shown that 10 popular anti-virus
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products such as Kaspersky, AVG and Symantec, lose their detection effective-
ness when the malware samples are obfuscated.

Scanner Number of detected (original) Number of detected (obfuscated) Difference

Antiy-AVL 1427 260 1167

MAX 1429 463 966

Comodo 999 122 877

F-Prot 830 54 776

Alibaba 975 291 684

K7GW 1348 679 669

McAfee 1446 805 641

Symantec 763 122 641

McAfee-GW-Edition 1265 669 596

DrWeb 1119 607 512

BitDefender 464 20 444

eScan 434 2 432

Ad-Aware 430 0 430

Baidu 308 0 308

Table 1. The Difference of Detection Rate By Scanners

We conducted the third experiment to better understand the effects of ob-
fuscation on malware detection effectiveness of existing scanners. To do so, we fo-
cused our analysis on a malware sample that belongs to Adware:android/dowgin [1]
family, which is an advertising module displaying advertisement while leaking or
harvesting information such as its IMEI number, location, and contact informa-
tion from the device.

We then obfuscated this malware sample using Alan [6]. Before it was ob-
fuscated, 20 scanners from the VirusTotal [7] were able to identify it as mal-
ware. However, after obfuscation, only 8 scanners could detect it. We statically
analyzed this app and its obfuscated counterpart. We checked its method call
graph, and found that there were 4,948 methods, 7,244 function calls prior to
obfuscation. After obfuscation, the number of methods increased to 6,387 and
the number of function calls increased to 8,683. Obviously, some methods were
inserted as part of the obfuscation process.

Fig. 2. Obfuscation Process

Figure 2 illustrates this obfuscation process. we have A→B as the original
function call, but in the obfuscated graph, we have A→C, C→B instead. This is
called Call Indirection. The structure of the original method graph is modified,
and scanners which is based on the signatures from the call graph would not be
able to detect such changes.
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We also compared their DEX codes. There were 93,077 lines in the original
DEX file, but there were 148,819 lines after obfuscation. Scanners which rely on
the order of the instruction as signatures would be ineffective by such changes.
Prior work called RevealDroid [19] has shown that even for machine learning-
based detectors, obfuscation is still problematic.

Clearly, there is a need to create a malware detector that maintains its ef-
fectiveness in spite of obfuscation. Our approach, Obfusifier applies static
analysis to identify code that cannot be obfuscated and then efficiently extracts
effective features to build a machine learning-based detection system. In the next
section, we introduce our proposed system.

4 Introducing Obfusifier

The main goal of the Obfusifier is to identify Android malware which has
been transformed via different obfuscation techniques and difficult to detect
via common antivirus scanners. Thus, the selected features must satisfy the
following four policies. First, these features must give a good representation of
the difference between malware and benign apps. Second, a very high detection
accuracy must be achieved when handling malware without obfuscation. Third,
the detection time must be sufficiently short for real-world application scenarios.
Fourth, the system must be resilient when used to detect obfuscated malware.

1. Graph Generation 4. Feature Extraction
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…
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Fig. 3. System Architecture

In this section, we describe the architectural overview of our proposed system,
which operates in five phases: Graph Generation, Graph Simplification, Sensitive
API Path Generation, Feature Extraction, and Malware Detection, as shown in
Figure 3. Next, we will describe each phase in turn.

4.1 Graph Generation

Method graph can be used as a good representation of the malware structure. It
represents the calling relationship between different methods and subroutines.
Each node in the graph represents a method, and a directed edge from one node
to the other shows their calling relationship. We implement Obfusifier based
on Jitana [28], a high-performance hybrid program analysis tool to perform
static and dynamic program analysis. Jitana can analyze DEX file, which in-
cludes the user-defined code, third party library code, framework code (including
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implementations of various Android APIs), and underlying system code. Jitana
analyzes the classes to uncover all methods and generates the method graph for
the app. Obfusifier takes advantage of the calling relationship of methods to
detect malware. As shown in Figure 4, blocks represent methods, and directed
edges indicate calling relationship among methods. Each block contains the name
of the method, its modifiers and the class name which this method belongs to.
Obfusifier captures the interactions of these methods, and understands the
semantic information that can help detect malware.

There are three types of methods in the graph: Android API method, system-
level method and user-defined method. All of these methods can be exploited
by malware writers to conduct malicious behaviors. In terms of code obfusca-
tion, APIs and system-level methods cannot be transformed by code obfuscation
techniques, otherwise the app will fail to run. The user-defined methods and the
classes the methods belong to can be renamed, so that the malware can evade
the antivirus scanners. As a result, only relying on the original method graph
may not be enough to build a obfuscation-resistant detector due to the negative
impact of code obfuscation. Lightweight features can be extracted from these
method graphs to build the malware detection system.

1 public
Lcom/nostra13ImageLoader;Lcom/nostra13/universalimageloader;)V

1 public static transient varargs
Lcom/nostra13/universalimageloader/utils/L;
d(Ljava/lang/String;[Ljava/lang/Object;)Vdirect

62

1 public
Lcom/nostra13/universalimageloader;
shouldPostProcess()Z

virtual
63

1 private static
core/ImageLoader;
defineHandler(DisplayImageOptions;)

direct
78

1 public
Landroid/support;
indexOfValue(Ljava/lang/Object;)I

virtual

63 direct78

Fig. 4. Method Graph
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4.2 Graph Simplification

Our key insight is that the Android APIs and system-level methods cannot be
transformed by code obfuscation, and this characteristics can be exploited to ex-
tract obfuscation-resistant features. Android APIs are published by Google, so
we can easily create a list of these APIs. System-level methods include the An-
droid OS source code and the Linux kernel source code, so it is not as convenient
to gather all these methods and therefore, we do not collect them. We simply
rely on the list of Android APIs that we collected.

In order to generate obfuscation-resistant graphs, we only keep the Android
APIs in the original method graph, and ignore the system-level methods, user-
defined methods and those from third party libraries. For example, as shown in
the Figure 5, nodes 1, 2, 4, 5, 6, 8 and 9 are Android APIs, and node 3 and node
7 are system-level or user-defined method. In this situation, our system simply
ignores nodes 3 and 7, and generates a new call edge from node 1 to node 5 and
another edge from node 4 to node 7. By doing so, we remove two nodes and
combine four method calls into two.

By performing graph simplification, we are able to reconstruct a graph that
is obfuscation-resistant while preserving the structural and semantic information
with respect to Android API usage of the original graph. In addition, the API-
only graph contain as much as an order of magnitude less information than the
original graph, allowing feature extraction to be much faster especially during
the path traversal phase.

4.3 Sensitive API Path (SAP) Generation

SAP is the program execution path from one node to the other in the API-only
graph. An SAP can be used to differentiate between the malicious and benign
behaviors. In order to generate SAPs, we need to select the critical APIs which
are used for path generation, since these APIs reflect the semantic information
about the behaviors of apps. We analyze the call frequency of APIs, and keep
APIs which are used only by malware because they can directly reflect the
malicious behaviors. We also extract some frequently used APIs by both malware
and benign apps in common, because even though they are used by both, the
additional program context (e.g., method call characteristics) can still represent
the difference between malware and benign apps. In the API-only graph, all
nodes whose in-degree are zero are considered as sources, and nodes whose out-
degree are zero are considered as destinations. Obfusifier generates SAPs from
sources to destinations via depth first search (DFS).

Figure 6 illustrates the process to generate SAPs. In the figure, there are two
sources (Node 1 and Node 2, marked as green) and two destinations (Node 4
and Node 10, marked as red) in the graph. Node 1 and Node 2 are sources (in-
degree is zero) as there are no edges flowing into them. Node 4 and Node 10
are destinations as they are selected and frequently used APIs. Starting from
Node 1, Node 2, and ending with Node 4, Node 10, four SAPs can be identified:
1→4, 1→5→9→10, 2→5→9→10 and 2→6→9→10.
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Fig. 6. Sensitive API Path (SAP) Generation

SAP reflects the running behaviors of apps, whose patterns can be useful in
distinguishing between malicious apps and benign ones.

4.4 Feature Extraction

We now describe the features, which our system extracts from the original
graphs, API-only graphs, and SAPs.

Path Statistic Feature (F1). We collect seven statistic features from Sensitive
API Path. These features include the the lengths of the longest and short paths,
the number of paths, the sum of lengths of all paths, the average length per path,
the number of methods in all paths, and the average number of methods per
path. These statistical features can indicate path characteristics and represent
malicious behaviors. For example, malware which conducts malicious behaviors
tends to generate shorter and less paths than benign apps. Since the paths in
API-only graphs only consist of APIs, this feature set is not affected by code
obfuscation. These features are concatenated to construct a numeric vector to
reflect the unique characteristics of app behaviors that can further preserve rich
information in these paths.

Simplified Graph Statistic Feature (F2). We select eight features from the
simplified graph. They are the number of methods, the number of classes and
the number of edges in the graph, graph density, the average in-degree and
out-degree of the graph, the number of sources (nodes of which in-degree are
zero) and destinations (nodes of which out-degree are zero). Compared with the
original graph, the simplified graph is much less obfuscated, because it does not
include the renamed user-defined classes and methods.

Original Graph Statistic Feature (F3). We also collect eight features from
the original graph. These features are the same as F2. Even though some of the
methods in the original graph are obfuscated, we still think these graphs can
reflect the malicious behaviors. Keeping features from the original graph might
still be useful to identify malware, whether it is obfuscated or not.
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Other Statistic Feature (F4). We save the original graph, simplified graph,
and SAP in separate files, and use the sizes of these files to form three new
numeric features. We assume that the size of file can reflect the amount of
generated information which indicates the complexity of these graphs and paths.
Besides, we also calculate the ratio of the number of methods in original graph
to the number in the simplified graph, and the ratio of the number of classes in
original graph to the number in the simplified graph. The ratio can reflect the
level of obfuscation accurately, and we hypothesize this will also contribute to
the malware detection. Finally, we form F4 as a vector of five features.

4.5 Detection

In the Detection phase, we apply three well-recognized machine learning algo-
rithms to determine if an Android app is malicious or benign. Our proposed
system utilizes four different features (F1 - F4) as previously mentioned. In-
tuitively, we consider that each of the four feature sets can reflect malicious
behaviors in some specific patterns. For API-only Graph Statistic Feature, be-
cause we remove all the user-defined classes and methods, which are usually
transformed by obfuscation techniques, to generate simplified graph, these fea-
tures are less likely affected by obfuscation. Besides, these features also reflect
the structural difference between malware and benign apps. For example, we find
that benign apps usually have more sources, destinations, classes and methods
than malware. Thus, we need the Original Graph Statistic Feature because the
graph simplification process also eliminates some of the original structural char-
acteristics of graphs. The size of files where we store graphs and paths can also
help build our detection system, for example, we observe that the size of the file
storing graph and paths from malware is usually smaller than benign apps. We
also notice that the graph density from malware is greater than benign apps, so
we gather these file size and graph density information to form Other Statistic
Feature.

We evaluate the performance of our system by using different feature sets
individually. In addition, we also concatenate different feature sets to construct
the combined new feature set and assess its impact on the detection result. In
terms of the classification policy, we apply three popular algorithms: Decision
Tree, Random Forest, and Support Vector Machine (SVM) [26, 22, 15]. These
machine learning algorithms have been shown to achieve superior performance
in addressing classification problems, which are integrated into Obfusifier.

5 Empirical Evaluation

To evaluate Obfusifier, we show its detection performance in terms of accu-
racy, precision, recall, and F-measure. we also illustrate its resistance against
obfuscation, and ultimately its runtime performance. We first present the pro-
cess of collecting our experimental apps, both benign and malicious, and explain
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how to transform malware using obfuscation techniques. Next, we show our de-
tection results based on different sets of features. We also compare our system
with several related approaches. Finally, we present the runtime performance of
Obfusifier.

5.1 Experimental Objects

To evaluate the performance of our proposed system, we collected a dataset con-
taining both malware and benign apps. We downloaded 24,317 malware samples
from VirusShare [5]. Compared to Android Genome Project [34], which is often
used by many researchers [24, 8], we included more malware samples and they
are also newer. However, they also include many of the samples in the Android
Genome Project. For benign apps, we collect 20,795 apps from APKPure [4],
a third party website providing Android apps. Note that we also used these
collected apps to conduct experiment in Section 3.

In order to avoid polluting our benign dataset with malware samples, we
cross-checked all apps downloaded from APKPure with VirusTotal, and remove
those apps identified as malware by VirusTotal from the benign dataset. After
we completed the cross-checking process, there are only 11,238 apps left for
the benign dataset. This checking process took 29 days. Also note that all the
samples in the malware dataset are also identified by VirusTotal as malicious.

5.2 Experimental Methodology

To evaluate the performance of our system, and guarantee the balance of the
data, we randomly chose 4,300 malicious samples, 4,300 benign apps as train-
ing/testing samples from our dataset. We also applied 10-fold cross validation.

In order to verify Obfusifier’s ability to resist to the code obfuscation, we
randomly choose another 568 benign apps and 568 malware as additional testing
set. We transform the additional 568 malicious samples using Alan by applying
all its transformations mentioned in Section 2.

As previously mentioned, our system utilizes four sets of features (F1, F2, F3,
F4) to construct our classifier and perform detection. To evaluate the classifica-
tion performance of the system, four metrics are calculated. They are Accuracy,
Precision, Recall and F-measure. We also assess the performance of our system
by combinations of different sets of features. For example, by concatenating F1
and F2 (F1 U F2), we form a new feature vector. Besides, we also compare our
system with several popular approaches based on similar datasets.

Our runtime evaluation was conducted using Macbook Pro with a dual-core
2.8 GHz Intel Core i7 running OS-X High Sierra and 16 GB of 1.33 GHz main
memory.

5.3 Detection Result

We discuss two usage scenarios in this section. The first scenario is when we
evaluate our classification system by 10-fold cross validation. All samples in the
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dataset are the original (non-obfuscated) apps. This experiment is conducted
to show that the classifier is effective and can detect unobfuscated malware
with high accuracy. In a typical application, we imagine that security analysts
would use obtainable, unobfuscated malware and benign samples for training
and testing. Table 2 reports our result.

In the second scenario, we continued to use the original unobfuscated samples
as in the first scenario for training; i.e., we used the same classifier built in the
first scenario. However, we expand the testing dataset to include 568 more benign
apps and then 568 more obfuscated malware samples (using Alan) so that we
can evaluate the ability of our system to maintain accurate detection in spite of
obfuscation. Note that we applied all obfuscation methods supported by Alan
to make detection more challenging and our testing dataset also includes the
same number of unobfuscated benign apps to maintain balance.

Table 3 shows the result of the second scenario (with obfuscation), in which
all the testing malware samples are obfuscated. But above all, in both cases, there
are not obfuscated apps in the training dataset, which means we do not need
obfuscated apps in the training phase, and this characteristic guarantees that
our system is robust and able to resist to obfuscated malware. The most powerful
strength of our system is to identify obfuscated malware without training with
obfuscated apps. Next, we discuss the results based on each feature.

Result Based on F1. Based on the the Path Statistic Feature (F1), we imple-
ment and evaluate our learning-based system. Table 2–F1 shows the detection
result without obfuscation in terms of three approaches: SVM, Decision Tree and
Random Forest. F1 is constructed by seven statistic features from Sensitive API
Path (SAP). All the SAPs are generated from the API-only graphs, in which
only methods that cannot be obfuscated are kept. Because obfuscation has little
or no effects on this graph, this feature set is important to build the proposed
obfuscation-resistant malware detection system.

In the first scenario (without obfuscation), we calculate the four metrics as
shown in Table 2–F1 for each classification technique based on F1. The Random
Forest and Decision Tree achieve the F-measure of 87.9% and 85.3% respectively.
On the other hand, SVM only yields the F-measure of 60.2%. The Random Forest
also has the accuracy of 87.6%, which outperforms the SVM and Decision Tree.
This result indicates that our system can incorrectly detect malware if we only
rely on F1.

In the second scenario, we assess our system with obfuscated apps. As shown
in Table 3–F1. Similar to the case without obfuscation, Random Forest per-
forms better than SVM and Decision Tree. It has the accuracy of 89.7% and
the F-measure of 89.8%. This result shows that our system is somewhat effec-
tive when identifying obfuscated Android malware. Interestingly, by checking
accuracy and F-measure for F1, the result with obfuscation in Table 3–F1 is
slightly better than the one without obfuscation in Table 2–F1. This is because
the impact of these transformations on the SAP feature is minor, so the system
trained using SAP can resist obfuscation naturally. However, the SAP is from
the simplified graph, which removes many user-defined methods from the orig-
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inal graph. Because of this, some contexts of the program which is helpful to
recognize the non-obfuscated malware are missing. As such, F1 performs better
when handling obfuscated malware.

Result Based on F2. API-only Graph Statistic Feature (F2) is the feature
vector directly form the the simplified graph. This feature is significant because
it reflects the structural difference between malware and benign apps, and the
influence of obfuscation on F2 is very small due to the elimination of all the
newly added methods or renamed methods (Junk Code and Call Indirection) in
the obfuscated and original graph.

Table 2–F2 shows the evaluation result without obfuscation. For F2, Random
Forest achieves the best accuracy of 92.9%. It also attains the highest F-measure
of 93.1% with 91.0% precision and 95.2% recall. Obviously, the result based on
F2 is better than F1. it indicates that features directly from the graph are more
effective than features from paths.

Table 3–F2 shows that our system is very effective even when dealing with
obfuscated malware. In terms of Random Forest, we can achieve the very high
accuracy 94.3% and F-measure 94.6%. This result validates out assumption that
features from these simplified API-only graphs, in which obfuscated methods
are removed, are very effective in identifying malware and resisting the nega-
tive impact of code obfuscation. As such, system trained based on F2 is more
obfuscation-resistant.

F1 F2 F3 F4 F1∪F2∪F3∪F4

SVM DT RF SVM DT RF SVM DT RF SVM DT RF SVM DT RF

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I. Accuracy 71.3 85.3 87.6 70.2 91.0 92.9 69.6 92.3 94.0 63.9 90.8 92.6 63.9 94.0 95.5

II. Precision 97.8 82.8 85.7 99.6 89.9 91.0 99.9 90.2 92.2 99.9 88.9 91.3 99.9 92.4 93.9

III. Recall 43.5 89.1 90.3 40.5 92.3 95.2 39.2 95.0 96.2 27.7 93.2 94.3 27.9 95.9 97.3

IV. F-Measure 60.2 85.3 87.9 57.6 91.1 93.1 56.3 92.5 94.1 43.4 91.0 92.7 43.6 94.1 95.5

Table 2. The performance of Obfusifier on non-obfuscated apps using five different
features (F1 – F4, F1UF2UF3UF4) and three different Machine Learning algorithms:
Support Vector Machine (SVM), Decision Tree (DT) and Random Forest (RF).

F1 F2 F3 F4 F1∪F2∪F3∪F4

SVM DT RF SVM DT RF SVM DT RF SVM DT RF SVM DT RF

(%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%) (%)

I. Accuracy 73.6 89.2 89.7 71.3 92.9 94.3 51.5 90.9 80.6 50.1 89.3 91.5 50.0 93.3 90.2

II. Precision 99.3 87.9 89.1 100.0 90.5 91.2 100.0 91.7 90.4 0 88.9 92.3 0 92.5 92.7

III. Recall 47.4 91.0 90.5 42.7 95.8 98.2 1.9 89.9 68.4 0 89.9 90.7 0 94.2 87.3

IV. F-Measure 64.2 89.4 89.8 59.8 93.1 94.6 3.8 90.8 77.9 0 89.4 91.5 0 93.4 89.9

Table 3. The performance of Obfusifier with obfuscated apps as testing set

Result Based on F3. F1 and F2 are created based on API-only graphs, in or-
der to reduce the impact of code obfuscation on malware detection. Based on our
reported results, these two feature sets not only help to identify non-obfuscated
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apps, but also show a remarkable efficacy when dealing with obfuscated mal-
ware. However, when graphs are simplified, some structural information which
is beneficial to distinguish non-obfuscated malware might be lost. In case that
original malware samples are also available, there is a potential to improve effec-
tiveness by extracting features from the original method graph to form a feature
set called Original Graph Statistic Feature (F3). The meaning of each feature in
F3 is exactly the same as F2.

As illustrated in Table 2–F3, F3 achieves higher performance than F1 and
F2 in all three classification techniques. Random Forest performs better than
Decision Tree and SVM for F3 as it attains F-measure of 94.1% while the other
two approaches (SVM and Decision Tree) achieve 56.3% and 92.5%, respectively.

For obfuscated malware, the performance of F3 is not as good as F1 and F2.
As illustrated in Table 3–F3, most of the metrics show F3 cannot handle the
obfuscated apps as good as F1 and F2. For example, in terms of Random Forest,
F3 only has F-measure of 77.9%, which is lower than F1 and F2, which achieve
89.8% and 94.6% respectively. As such, F3 alone is not a sufficient feature set to
achieve obfuscation-resistant capability.

Result Based on F4. We transform the sizes of several files, the ratio of the
number of methods in original graph to the number in the simplified graph, and
the ratio of the number of classes in original graph to the number in the simplified
graph into a new feature, referred to Other Statistic Feature (F4). We assume
that these file sizes and the ratios are also efficient features for distinguishing
between malware and benign apps.

Table 2–F4 shows the detection result on non-obfuscated malware. Random
Forest achieves the highest accuracy of 92.6% and F-measure of 92.7%, outper-
forming SVM and Decision Tree. Table 3–F4 illustrates the result with obfus-
cation. Random Forest also performs best yielding F-measure of 91.5%. Results
based on F4 verify our assumption, and these sizes of files and ratios can provide
another efficient feature to build the malware detection system.

Result Based on F1 U F2 U F3 U F4. By aggregating all our feature sets,
as shown in Table 2, using Random Forest, we achieve the accuracy of 95.5%
and F-measure of 95.5%. Table 3 shows that the combination of all feature sets
also works well for obfuscated malware.

5.4 Comparison with Related Approaches

Next, we compare the performance of Obfusifier with other research efforts
including RevealDroid [19], MUDFLOW [12], Adagio [20] and Drebin [9].
More information about these systems are available in Section 7.

In this work, we relied on the data provide in the RevealDroid paper
as a base for comparison. They conducted an investigation that compared the
detection performance of RevealDroid with the other three systems. Thus, we
simply compared our system’s performance against the reported performance.

Another noticeable difference is that RevealDroid obfuscated their mal-
ware using DroidChameleon [25]. RevealDroid applies four sets of transforma-
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tions on there dataset including call indirection, rename classes, encrypt arrays,
and encrypt strings. We, on the other hand, obfuscated our dataset with Alan,
and enabled all transformations described in Section 2. In our approach, “Data
Encoding” technique includes the “Encrypt Arrays and Encrypt Strings” by
DroidChameleon, and our “Identifier Renaming” includes “Rename Classes” by
DroidChameleon. The level of obfuscation in our dataset is higher than Reveal-
Droid, so our transformed malware should be more difficult to detect.

The malicious apps used to investigate RevealDroid are from Android
Malware Genome [34], the Drebin dataset [9] and VirusShare [5]. Our malicious
dataset is only from VirusShare. However, the samples on VirusShare contain
similar apps in Android Malware Genome and Drebin dataset. The similarity
of the dataset ensures the fairness of comparisons.

When comparing with the other four systems, we consider two scenarios. The
first scenario is testing the non-obfuscated malware (without obfuscation). The
second scenario is testing the obfuscated malware (with obfuscation). In the first
scenario, RevealDroid splits a dataset including 1,742 benign apps and 7,989
malicious ones into two parts evenly. One part is the training dataset, the other
one is for testing. The training dataset has half of the benign apps and half of the
malicious apps. For this case, we also split our dataset consisting 4,300 benign
apps and 4,300 malicious apps randomly into two parts evenly, one part for
training, other part for testing. In the second scenario, RevealDroid has 7,995
malicious apps and 878 benign apps in the training set, and 1,188 obfuscated
malicious apps and 869 benign apps for testing. Similar to their dataset, there
are 4,300 benign apps and 4,300 malicious ones in our training set, and we form
a testing set with 568 benign apps and 568 obfuscated malicious ones.

Note that all of our samples are chosen and split randomly. Compared with
the imbalanced dataset from RevealDroid, our dataset is very balanced. When
training imbalanced data, which the number of malware is greater than benign
apps, the classifier often favor the majority class and form a biased prediction
model. The imbalance in the testing set will also cause notable inaccuracy.

Table 4 shows the comparison result without obfuscation. Table 5 presents the
comparison result with obfuscated malware. Without obfuscation, as illustrated
in Table 4, Drebin shows the best performance with the average precision,
recall and F-measure reaching 99%, we think this is because Drebin gathers
all types of features, such as permission, API call, intents and the diversity of
the feature set plays a significant role to detect malware. Obfusifier has the
average F-measure of 96%, which is the same as RevealDroid. Even though the
performance is not as good as Drebin, both Obfusifier and RevealDroid
outperform Adagio, of which average F-measure is 90%. MUDFLOW has the
worst result, with only average 71% F-measure and 66% recall.

With obfuscation, as illustrated in Table 5, Obfusifier outperforms all other
four systems. This result is from feature combinations of F1 U F2 U F4. Note
that F3 is a feature set extracted from the original method graph so the F3
feature set is not obfuscation resistant. It achieves surprisingly high metrics, with
an average of 95% precision, recall, and F-measure. Note that the F-measure of
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MUDFLOW with obfuscation is only 74%. This result is very close to the result
without obfuscation (F-measure of 71%).

We suspect that this is because its feature sets are not influenced by the
obfuscation techniques. Drebin shows poor performance with obfuscation, the
average precision, recall and F-measure are 0%. This is because all of Drebin’s
feature sets are negatively influenced by obfuscation, and this result indicates
that Drebin is not resilient against obfuscation. Adagio achieves the average
F-measure 62% with obfuscation, but this is not as good as its result (F-measure
90%) without obfuscation. Still it shows the ability to detect obfuscated malware.
The average F-measure and recall of RevealDroid is 85%, which is not as high
as Obfusifier.

MUDFLOW

(%)

RevealDroid

(%)

Adagio

(%)

Drebin

(%)

Obfusifier

(%)

Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm

Ben 85 34 49 90 88 89 90 76 83 97 100 98 97 94 95

Mal 87 99 93 97 98 98 95 98 96 100 99 100 94 97 96

AVG 86 66 71 96 96 96 92 87 90 99 99 99 96 96 96

Table 4. Comparison Without Obfuscation (Pr = Precision, Re = Recall, and Fm =
F-measure)

MUDFLOW

(%)

RevealDroid

(%)

Adagio

(%)

Drebin

(%)

Obfusifier

(%)

Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm Pr Re Fm

Ben 98 47 64 91 72 80 54 73 62 42 100 59 97 92 95

Mal 72 99 84 82 95 88 73 54 62 0 0 0 93 98 95

AVG 88 73 74 86 85 85 63 63 62 18 42 25 95 95 95

Table 5. Comparison With Other Methods (Pr = Precision, Re = Recall, and Fm =
F-measure)

5.5 Runtime Performance

For real-world applications, a malware detector must be both effective and effi-
cient. To evaluate the efficiency of Obfusifier, we measured the time taken to
analyze and detect a malware sample. As part of analysis, one critical factor that
can affect efficiency is the time to train the classification model and the time
needed to test each app. The training time is the time to build the prediction
model. The testing time is the average number to test each app. Another key
factor is the time we spend to statically analyze apps and extract its features. We
also list the average time needed to analyze each app in different phases: Graph
Generation, Graph Simplification, SAP Generation and Feature Extraction. We
measured the time of 100 apps (50 benign and 50 malicious apps, respectively)



Obfusifier: Obfuscation-Resistant Android Malware Detection System 17

and calculate the average execution time for each app in each phase. We found
the system took the average total of 35.06 seconds to analyze each app, gener-
ate graphs, simplify paths, and extract features. This runtime result should be
acceptable for detecting obfuscated and complex malware in real-world settings.

6 Discussion

Our evaluations have shown Obfusifier’s robustness, and its ability to handle
obfuscated Android malware with high efficiency and accuracy. However, there
are still some limitations of our system.

First, we only obfuscate malicious apps using Alan. According to the results
from VirusTotal, Alan provides several very effective obfuscation techniques
which help malware evade many existing anti-virus scanners. However, in order
to verify Obfusifier’s ability to deal with different obfuscation techniques, we
plan to experiment with more Android obfuscation tools, such as DashO [3],
DexGuard [2] to transform malware codes.

Second, our system cannot handle the malware transformed by the obfusca-
tion on the native code. Malware authors can take advantage of this loop-hole to
encrypt the strings and arrays in the native code, and then decrypt them during
runtime to hide the malicious behaviors. One notable tool that can close this
loop-hole is Obfuscator-LLVM [21], which targets the native code obfusca-
tion. We plan to experiment with this tool and attempt to integrate it into our
workflow.

Third, our system is based on static analysis of the DEX code, but if the
DEX code is encrypted and then decrypted at runtime, we cannot capture its
method graph and malicious behaviors. A special obfuscation technique called
packing [18], which is used to protect Android apps being reverse engineered.
It creates a wrapper application, and hide the original DEX code so that the
original app cannot be reverse engineered. This wrapper app loads necessary
libraries to unpack the original code at runtime. In future, we will consider the
incorporation of dynamic analyzer in Obfusifier.

7 Related Work

In this section, we describe works that are closely related to ours, including the
four baseline systems used in Section 5 and other prior works about malware
detection.

Garcia et al. [19] introduced RevealDroid as a lightweight machine learning-
based system to detect Android malware and identify Android malware families.
It constructs features from the Android API usage, reflection characteristic and
native binaries of the app. The evaluation shows that RevealDroid can de-
tect malware (both non-obfuscated and obfuscated malware) and identify mal-
ware family with high accuracy. MUDFLOW [12] is built on the static analysis
tool FLOWDROID [10]. It extracts the normal data flow from benign apps as
patterns, mines these benign patterns, and use these pattern to automatically
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identify malicious behaviors. The novelty of their work is that they only use
information from benign apps to train their system, and identify abnormal flows
in malicious apps. Our evaluations indicate that MUDFLOW has some abil-
ity to detect obfuscated malware, with the precision of 88% and F-measure of
74%. Adagio [20] extracts the function call from Android apps and map these
function calls to features, and build a machine learning system based on these
features. As shown, the proposed system loses its accuracy when the malware
samples are obfuscated.

Drebin [9] is a machine learning-based malware detector, which performs
broad static analysis on Android apps and collect many features such as per-
mission, API calls, intents from app’s code and the Manifest file and embedded
them in a vector space that can be used to discover patterns of malware. These
patterns are then used to build a machine learning detection system. The system
is accurate but it requires running on a rooted device. As shown in our exper-
iment, Drebin is not able to detect obfuscated malware. AppContext [31] is
another machine learning-based malware detector which focusing on the con-
text difference between malware and benign apps. It leverages SOOT [29] as the
static analysis engine and uses the permission mappings offered by PScout [11]
to extracts the contexts based on Android components, Android permissions
and Intent. They achieve 87.7% precision and 95% recall, which are lower than
our system. The average analysis time of AppContext for each app is about
5 minutes [31], while we only need 35 seconds. This behavior based approach
might be able to resist obfuscation, and we hope we can get its source code and
assess its performance over obfuscated malware in future.

DroidMiner [30] is a system that mines the program logic from Android
malware, extracts this logic to modalities, which are ordered sequence of APIs,
and constructs malicious patterns for malware detection. It builds a method call
graph for each app, control flow graph, and generates modalities (API paths
and subpaths) from sensitive methods. A feature vector based on the existence
of modalities is formed for classification. They replace user-defined methods with
framework API functions. We, on the other hand, remove the user-defined meth-
ods for efficiency. DroidSIFT [33] is also a machine learning-based detector
based on static analysis. They generate weighted contextual API dependency
graphs, build graph databases, and construct a graph-based feature vector by
performing graph similarity queries. Their features represent program behav-
iors at the semantic level. Note that the average detection time is about 176.8
seconds [33], while we only need 35 seconds.

8 Conclusion

We introduce Obfusifier, a machine learning based malware detection system
that is highly resistant to code obfuscation. The key insight is that obfuscation
cannot be applied to portions of codes that include calls to Android APIs, ker-
nel functions, and third party library APIs. Our system mainly extracts features
based on these portions of codes unaffected by obfuscation. In total, we use four
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feature sets consisting of 28 features. Our results showed that the effectiveness
of the system is not affected by obfuscation. The system can achieve an aver-
age F-measure of 96% for detecting non-obfuscated malware. More importantly,
the system can achieve an average F-measure of 95% in detecting obfuscated
malware, suffering only a 1% drop in performance.
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