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Abstract. A recent report has shown that there are more than 5,000
malicious applications created for Android devices each day. This creates
a need for researchers to develop effective and efficient malware classi-
fication and detection approaches. To address this need, we introduce
DRrROIDCLASSIFIER: a systematic framework for classifying network traffic
generated by mobile malware. Our approach utilizes network traffic anal-
ysis to construct multiple models in an automated fashion using a super-
vised method over a set of labeled malware network traffic (the training
dataset). Each model is built by extracting common identifiers from mul-
tiple HTTP header fields. Adaptive thresholds are designed to capture
the disparate characteristics of different malware families. Clustering is
then used to improve the classification efficiency. Finally, we aggregate
the multiple models to construct a holistic model to conduct cluster-level
malware classification. We then perform a comprehensive evaluation of
DROIDCLASSIFIER by using 706 malware samples as the training set and
657 malware samples and 5,215 benign apps as the testing set. Collec-
tively, these malicious and benign apps generate 17,949 network flows.
The results show that DROIDCLASSIFIER successfully identifies over 90%
of different families of malware with more than 90% accuracy with acces-
sible computational cost. Thus, DROIDCLASSIFIER can facilitate network
management in a large network, and enable unobtrusive detection of
mobile malware. By focusing on analyzing network behaviors, we expect
DRrROIDCLASSIFIER to work with reasonable accuracy for other mobile
platforms such as iOS and Windows Mobile as well.

Keywords: Mobile Security, Android Malware Detection, Malware Clas-
sification, HTTP Network Traffic

1 Introduction

Android is currently the most popular smart-mobile device operating system in
the world, holding about 80% of world-wide market share. Due to their pop-
ularity and platform openness, Android devices, unfortunately, have also been



subjected to a marked increase in the number of malware and vulnerability ex-
ploits targeting them. According to a recent study from F-Secure Labs, there
are at least 275 new families (or new variants of known families) of malware
that currently target Android [8]. On the contrary, only one new threat family
on i0S was reported.

As smart-mobile devices gradually become the preferred end-hosts for ac-
cessing the Internet, network traffic of mobile apps has been utilized to identify
mobile applications to facilitate network management tasks [33]. However, the
methods of identifying benign mobile applications fall short when dealing with
mobile malware, due to the unique traffic characteristics of malicious applica-
tions. From our observation, malicious attacks by mobile malware often involve
network connectivity. Network connection has been utilized to launch attack
activities or steal sensitive personal information. As a result, studying network
traffic going into or coming out of Android devices can yield unique insights
about the attack origination and patterns.

In this paper, we present DROIDCLASSIFIER, a systematic framework for clas-
sifying and detecting malicious network traffic produced by Android malicious
apps. Our work attempts to aggregate additional application traffic header in-
formation (e.g., method, user agent, referrer, cookies and protocol) to derive at
more meaningful and accurate malware analysis results. As such, DROIDCLAS-
SIFIER has been designed and constructed to consider multiple dimensions of
malicious traffic information to establish malicious network patterns. First, it
uses the traffic information to create clusters of applications. It then analyzes
these application clusters (i) to identify whether the apps in each cluster are
malicious or benign and (ii) to classify which family the malicious apps belong
to.

DrROIDCLASSIFIER is designed to be efficient and lightweight, and it can be
integrated into network IDS/IPS to perform mobile malware classification and
detection in a large network. We evaluate DROIDCLASSIFIER using more than six
thousand Android benign apps and malware samples; each with the correspond-
ing collected network traffic. In total, these malicious and benign apps generate
17,949 traffic flows. We then use DROIDCLASSIFIER to identify the malicious por-
tions of the network traffic, and to extract the multi-field contents of the HTTP
headers generated by the mobile malware to build extensive and concrete iden-
tifiers for classifying different types of mobile malware. Our results show that
DrOIDCLASSIFIER can accurately classify malicious traffic and distinguish ma-
licious traffic from benign traffic using HT'TP header information. Experiments
indicate that our framework can achieve more than 90% classification rate and
detection accuracy while it is also more efficient than a state-of-the-art malware
classification and detection approach [2].

In summary, the contributions of our work are mainly two-fold. First, we de-
velop DROIDCLASSIFIER, which considers multiple dimensions of mobile traffic
information from different families of mobile malware to establish distinguish-
able malicious patterns. Second, we design a novel weighted score-based metric
for malware classification, and we further optimize the performance of our classi-
fier using a novel combination of supervised learning (score-based classification)



and unsupervised learning (malware clustering). The clustering step makes our
detection phase more efficient than prior efforts, since the subsequent malware
classification can be performed over clustered malware requests instead of indi-
vidual requests from malware samples.

The rest of this paper is organized as follows. Section 2 explains why we con-
sider multidimensional network information to build our framework. Section 3
provides overview of prior work related to the proposed DROIDCLASSIFIER. Sec-
tion 4 discusses the approach used in the design of DROIDCLASSIFIER, and the
tuning of important parameters in the system. DROIDCLASSIFIER is evaluated
in Section 5. Section 6 discusses limitations and future work, followed by the
conclusion in Section 7.

2 Motivation

A recent report indicates that close to 5,000 Android malicious apps are created
each day [6]. The majority of these apps also use various forms of obfuscation
to avoid detection by security analysts. However, a recent report by Symantec
indicates that Android malware authors tend to improve upon existing malware
instead of creating new ones. In fact, the study finds that more than three
quarters of all Android malware reported during the first three months of 2014
can be categorized into just 10 families [26]. As such, while malware samples
belonging to a family appear to be different in terms of source code and program
structures due to obfuscation, they tend to exhibit similar runtime behaviors.

This observation motivates the adoption of network traffic analysis to detect
malware [2,5,20,31]. The initial approach is to match requested URIs or host-
names with known malicious URIs or hostnames. However, as malware authors
increase malware complexities (e.g., making subtle changes to the behaviors or
using multiple servers as destinations to send sensitive information), the results
produced by hostname analysis tend to be inaccurate.

To overcome these subtle changes made by malware authors to avoid de-
tection, Aresu et al. [2] apply clustering as part of network traffic analysis to
determine malware families. Once these clusters have been identified, they ex-
tract features from these clusters and use the extracted information to detect
malware [2]. Their experimental results indicate that their approach can yield
60% to 100% malware detection rate. The main benefit of this approach is that it
handles these subtle changing malware behaviors as part of training by cluster-
ing the malware traffic. However, the detection is done by analyzing each request
to identify network signatures and then matching signatures. This can be inef-
ficient when dealing with a large traffic amount. In addition, as these changes
attempted by malware authors occur frequently, the training process may also
need to be performed frequently. As will be shown in Section 5, this training
process, which includes clustering, can be very costly.

We see an opportunity to deal with these changes effectively while stream-
lining the classification and detection process to make it more efficient than the
approach introduced by Aresu et al. [2]. Our proposed approach, DROIDCLASSI-
FIER, relies on two important insights. First, most newly created malware belongs



to previously known families. Second, clustering, as shown by Aresu et al., can
effectively deal with subtle changes made by malware authors to avoid detection.
We construct DROIDCLASSIFIER to exploit previously known information about
a malware sample and the family it belongs to. This information can be easily
obtained from existing security reports as well as malware classifications pro-
vided by various malware research archives including Android Malware Genome
Project [36]. Our approach uses this information to perform training by analyz-
ing traffic generated by malware samples belonging to the same family to extract
most relevant features.

To deal with variations within a malware family and to improve testing effi-
ciency, we perform clustering of the testing traffic data and compare features of
each resulting cluster to those of each family as part of classification and detec-
tion process. Note that the purpose of our clustering mechanism is different from
the clustering mechanism used by Aresu et al. [2], in which they apply clustering
to extract useful malware signatures. Our approach does not rely on the cluster-
ing mechanism to extract malware traffic features. Instead, we apply clustering
in the detection phase to improve the detection efficiency by classifying and de-
tecting malware at the cluster granularity instead of at each individual request
granularity, resulting in much less classification and detection efforts. By relying
on previously known and precise classification information, we only extract the
most relevant features from each family. This allows us to use fewer features
than the prior approach [2]. As will be shown in Section 5, DROIDCLASSIFIER is
both effective and efficient in malware classification and detection.

3 Related Work

Network Traffic Analysis has been used to monitor runtime behaviors by exer-
cising targeted applications to observe app activities and collect relevant data
to help with analysis of runtime behaviors [9, 15, 22,28, 35]. Information can be
gathered at ISP level or by employing proxy servers and emulators. Our ap-
proach also collects network traffic by executing apps in device emulators. The
collected traffic information can be analyzed for leakage of sensitive informa-
tion [7,10], used for classification based on network behaviors [20], or exploited
to automatically detect malware [3,5,31].

Supervised and unsupervised learning approaches are then used to help with
detecting [14,30,34] and classifying desktop malware [17,20] based on collected
network traffic. Recently, there have been several efforts that use network traffic
analysis and machine learning to detect mobile malware. Shabtai et al. [25]
present a Host-based Android machine learning malware detection system to
target the repackaging attacks. They conclude that deviations of some benign
behaviors can be regarded as malicious ones. Narudin et al. [18] come up with a
TCP/HTTP based malware detection system. They extracted basic information,
(e.g. IP address), content based, time based and connection based features to
build the detection system. Their approach can only determine if an app is
malicious or not, and they cannot classify malware to different families.



FIRMA [21] is a tool that clusters unlabeled malware samples according
to network traces. It produces network signatures for each malware family for
detection. Anshul et al. [3] propose a malware detection system using network
traffic. They extract statistical features of malware traffic, and select decision
trees as a classifier to build their system. Their system can only judge whether an
app is malicious or not. Our system, however, can identify the family of malware.

Aresu et al. [2] create malware clusters using traffic and extract signatures
from clusters to detect malware. Our work is different from their approach in
that we extract malware patterns from existing families by analyzing HTTP
traffic and determining scores to help with malware classification and detection.
To make our system more efficient, we then form clusters of testing traffics
to reduce the number of test cases (each cluster is a test case) that must be
evaluated. This allows our approach to be more efficient than the prior effort
that analyzes each testing traffic trace.

4 Introducing DroidClassifier

Our proposed system, DROIDCLASSIFIER, is designed to achieve two objectives:
(i) to distinguish between benign and malicious traffic; and (ii) to automatically
classify malware into families based on HT'TP traffic information. To accomplish
these objectives, the system employs three major components: training module,
clustering module, and malware classification and detection module.

The training module has three major functions: feature extraction, malware
database construction, and family threshold decision based on scores. After ex-
tracting features from a collection of HTTP network traffic of malicious apps
inside the training set, the module produces a database of network patterns per
family and the zscore threshold that can be used to evaluate the maliciousness of
the network traffic from malware samples and classify them into corresponding
malware families. To address subtle behavioral changes among malware samples
and to improve detection efficiency, the clustering module is followed to collect
a set of network traffic and gather similar HTTP traffic into the same group so
as to classify network traffic as groups.

Finally, the malware classification and detection module computes the scores
and the corresponding zscore based on HTTP traffic information of a particular
traffic cluster. If this absolute value of zs.ore is less than the threshold of one
family, our system classifies the HT'TP traffic into the malware family. It then
evaluates whether the HT'TP traffic requests are from a certain malware family
or from benign apps, the strategy of which is similar to that of the classification
module. Our Training and Scoring mechanisms provide a quantitative measure-
ment for malware classification and detection. Next, we describe the training,
traffic clustering, malware classification, and malware detection process in de-
tails.

4.1 Model Training

The training process requires four steps as shown in Figure 1. The first step
is collecting network traffic information of applications that can be used for



training, classification, and detection. With respect to training, the network
traffic data set that we focus on is collected from malicious apps. The second
step is extracting relevant features that can be used for training and testing. The
third step is building malware database. Lastly, we compute the scores that can
be used for classification and detection. Next, we describe each of these steps in

turn.
Network Feature Malware » Score
Traffic Files Extraction Database ”| Calculation

Fig. 1. Steps taken by DROIDCLASSIFIER to perform training

Collecting Network Traffic. To collect network traffic, we locate malware
samples that have already been classified into families. We use the real-world mal-
ware samples provided by Android Malware Genome Project [36] and Drebin [4]
project, which classify 1,363 malware samples, making a total of 2,689 HTTP
requests, into 10 families. We randomly choose 706 samples to build the training
model, and the remaining 657 samples as malware evaluation set. We also use
5,215 benign apps, generating 15,260 HTTP requests, to evaluate the detection
phase. These benign apps are from the Google Play store.

The first step of traffic collection is installing samples belonging to a family
into an Android device or a device emulator (as used in this study). We use 50%
of malware samples for training; i.e., 30% for database building and 20% for
threshold calculation. We also use 20% of benign apps for threshold calculation.

To exercise these samples, we use Monkey to randomly generate event se-
quences to run each of these samples for 5 minutes to generate network traffic.
We choose this duration because a prior work by Chen et al. [5] shows that most
malware would generate malicious traffic in the first 5 minutes.

In the third step, we use Wireshark or tcpdump, a network protocol analyzer,
to collect the network traffic information. In the last step, we generate the net-
work traffic traces as PCAP files. After we have collected the network traffic
information from a family of malware, we repeat the process for the next family.

It is worth noting that our dataset contains several repackaged Android mal-
ware samples. Though most of the traffic patterns generated by repackaged mal-
ware apps and carrier apps are similar, we find that these repackaged malware
samples do generate malicious traffic. Furthermore, our samples also generate
some common ad-library traffic, and the traffic can also bring noise to our train-
ing phase. In our implementation, we establish a “white-list” request library
containing requests sending to benign URLs and common ad-libraries. We filter
out white-listed requests and use only the remaining potential malicious traffic
to train the model and perform the detection.

Extracting Features for Model Building. We limit our investigation to
HTTP traffic because it is a commonly used protocol for network communica-
tion. There are four types of HTTP message headers: General Header, Request



Header, Response Header and Entity Header. Collectively, these four types of
header result in 80 header fields [27]. However, we also observe that fewer than
12 fields are regularly used in the generated traffic. We manually analyze these
header fields and choose five of them as our features. Note that we do not rank
them. If more useful headers can be obtained from a different dataset, we may
need to retrain the system.

Also note that we utilize these features differently from the prior work [20].
In the training phase, we make use of multiple fields, and come up with a new
weighted score-based mechanism to classify HTTP traffic. Perdisci et al. [20],
on the other hand, use clustering to generate malware signatures. In our ap-
proach, clustering is used as an optimization to reduce the complexity of the
detection/classification phase. As such, our approach can be regarded as a com-
bination of both supervised and unsupervised learning.

By using different fields of HTTP traffic information, we, in effect, increase
the dimension of our training and testing datasets. If one of these fields is inade-
quate in determining malware family, e.g., malware authors deliberately tamper
one or more fields to avoid analysis, other fields can often be used to help de-
termine malware family, leading to better clustering/classification results. Next,
we discuss the rationale of selecting these features and the relative importance
of them.

Table 1. Features Extracted

Field Name |Description

Host This field specifies the Internet host and port number of the resource.
Referer This field contains URL of a page from which HTTP request originated.
Request-URI | The URI from the request source.

User-Agent This field contains information about the user agent originating the request.
Content-Type|This field indicates the media type of the entity-body sent to the recipient.

e Host can be effective in detecting and classifying certain types of malware
with clear and relatively stabilized hostname fields in their HTTP traffic. Based
on our observation, most of the malware families generate HTTP traffic with
only a small number of disparate host fields.

e Referrer identifies the origination of a request. This information can intro-
duce privacy concerns as IMEI, SDK version and device model, device brand can
be sent through this field as demonstrated by DroidKungFu and Fakelnstaller
families.

e Request-URI can also leak sensitive information. We observe that Gappusin
family can use this field to leak device information, such as IMEI, IMSI, and OS
Version.

e User-Agent contains a text sequence containing information such as device
manufacturer, version, plugins, and toolbars installed on the browser. We observe
that malware can use this field to send information to the Command & Control
(C&C) server.

e (Content-Type can be unique for some malware families. For example,
Opfake has a unique “multipart/form-data; boundary=AaB03x” Content-Type
field, which can also be included to elevate the successful rate of malware detec-
tion.



Request-URI and Referrer are the two most important features because they
contain rich contextual information. Host and User-Agent serve as additional
discernible features to identify certain types of malware. Content-Type is the
least important in terms of identifiable capability; however, we also observe that
this feature is capable of recognizing some specific families of malware.

Although dedicated adversaries can dynamically tamper these fields to evade
the detection, such adaptive behaviors may incur additional operational costs,
which we suspect is the reason why the level of adaptation is low, according
to our experiments. We defer the investigation of malware’s adaptive behaviors
to future work. In addition, employing multiple hosts can possibly evade our
detection at a cost of higher maintenance expenses. In our current dataset, we
have seen that some families use multiple hosts to receive information and we
are still able to detect and classify them by using multiple network features.

We also notice that these malware samples utilize C&C servers to receive

leaked information and control malicious actions. In our data set, many C&C
servers are still fully or partially functional. For fully functional servers, we
observe their responses. We notice that these responses are mainly simple ac-
knowledgments (e.g., “200 OK”). For the partially functional servers, we can
still observe information sent by malware sample to these servers.
Building Malware Database. Once we have identified relevant features, we
extract values for each field in each request. As an example, to build a database
for the DroidKungFu malware family, we search all traffic trace files (PCAPs)
of the all samples belonging to this family (100 samples in this case), extract all
values or common longest substring patterns, in the case of Request-URI fields,
of the five relevant features, put them into lists with no duplicated values, and
build a map between each key and its values.

Scoring of Malware Traffic Requests. In the training process, we assign
scores to malware traffic requests to compute the classification/detection thresh-
old, which we termed as training zscore computation. We need to calculate the
malware 2,.ore range for each malware family. We use traffic from 20% of mal-
ware samples belonging to each family for training z.or. computation. For each
malware family, we assign a weight to each HTTP field to quantify different
contributions of each field according to the number of patterns the field entails,
since the number of patterns of a field indicates the uncertainty of extracted pat-
terns. For example, the field with a single pattern is deemed as a unique field,
thus it is considered to be a field with high contributions. In contrast, the field
with a number of patterns would be weighted lower. As such, we compute the
total number of patterns of each field from the malware databases to determine
the weight. The following formula illustrates the weight computation for each
field: w; = % x 100, where w; stands for the weight for ith field, and ¢; is the
number of patterns for the ith field for each family in malware databases. For
instance, there are 30 patterns for field User-Agent of one malware family in
malware databases, so the weight of User-Agent is 3—10 x 100.

In terms of the Request URI field, we use a different strategy because this
filed usually contains a long string. We use the Levenshtein distance [16] to
calculate the similarity between the testing URI and each pattern. Levenshtein



Algorithm 1: Calculating Request Scores From One PCAP

1: dataBase[ ] < Database built from the previous phrase
2: pcapFile < Each PCAP file from 20% of malware families
3: fieldNames| ] <+ Name list for all the extracted fields

4: tempScore < 0

5: sumScore < 0

6: avgScore < 0

7: for each httpRequest in pcapFile do

8 for each name in fieldNames do

9 if httpRequest.name # NULL then

10: if name # “requestURI” then

11: if httpRequest.name in dataBase(name) then

12: tempScore <— 100 {The default weight is 100}

13: else

14: tempScore < 0

15: end if

16: else

17: similarity <
similarityFunction(httpRequest.requestURI, dataBase(“requestURI"))

18: tempScore < 100 X similarity

19: end if

20: end if

21: sumScore < sumScore + tempScore

22: end for

23: avgScore < sumScore + Size of fieldNames

24: record avgScore as the original score of each httpRequest

25: end for

distance measures the minimum number of substitutions required to change one
string into the other. After comparing with each pattern, we choose the greatest
similarity as a target value, for example, if the similarity value is 0.76, the weight
will be 0.76 x 100 or 76 for the URI field. The score can be calculated using the
following equation: score = % Zivzl w; X m;, where w; is weight for iy, field,
and m; indicates whether there is a pattern in the database that matches the
field value. If there is, m; is 1, otherwise, it is 0. Note that m; is always 1 for
the URI field.

After obtaining all the field values and calculating the summation of these
values, we then divide it by the total number of fields (i.e., 5 in this case). The
result is the original score of this HT'TP request.

Then we need to calculate the malware zs.ore range for each family. we cal-
culate the average score and standard derivation of those original scores which
are mentioned above. Next, we calculate the absolute value of the zs.ore, which
represents the distance between the original score (x) and the mean score ()
divided by the standard deviation (s) for each request: |zscore| = [25Z].

Once we get the range of absolute value of zs.ore from all malware training
requests of each family, it is used to determine the threshold for classification
and detection. We will illustrate the threshold decision process in the following
section. Algorithm 1 outlines the steps of calculating original scores from PCAP
files. Note that in the testing process, the same z.ore computation is conducted
to evaluate the scores of the testing traffic requests, which we termed as testing
Zscore cOmputation to avoid confusion.



4.2 Malware Clustering during Testing

We automatically apply clustering analysis to all of our testing requests. We use
hierarchical clustering [24], which can build either a top-down or bottom-up tree
to determine malware clusters. The advantage of hierarchical clustering is that it
is flexible on the proximity measure, and is able to visualize the clustering results
using dendrogram that can be used to choose the optimal number of clusters.

In our framework, we use the single-linkage [24] clustering, which is an ag-
glomerative or bottom-up approach. According to Perdisci et al. [20], single-
linkage hierarchical clustering has the best performance compared to X-means [19]
and complete-linkage [12] hierarchical clustering.

Feature Extraction for Clustering. First, we need to compute distance mea-
sures to represent similarities among HTTP requests. We extract features from
URLs and define a distance between two requests according to an algorithm
proposed in [20], except that we reduce the number of features to make our
algorithm much more efficient. In the end, we extract three types of features
to perform clustering: domain name and port number, path to the file, and
Jaccard’s distance [11] between parameter keys. As an example, consider the
following request:

http://www.example.com:80/path/to/myfile.html?keyl=valuel&key2=value?2

The field, www . example. com: 80, represents the first feature. The field, /path/to/
myfile.html, represents the second feature. The field, keyl=valuel&key2=value2,
represents the parameters, each is a key-value pair, of this request. To compute
the third feature, we calculate the Jaccard’s distance [11] between the keys. We
do not use the parameter values here because these values can be very long,
and the comparison between a large number of long strings will consume a large
amount of time.

Note that in work by Perdisci et al. [20], they also use the same three features
with an addition of the fourth with is the concatenation of parameter values to
calculate the similarity of requests for desktop applications. According to [2],
the length of URL is larger for the Android malware than the desktop malware,
and from our tests, we find the time to calculate the similarity using the fourth
feature is much longer than with just three features. We also find that we can
get comparable clustering accuracy with just using the three features. As such,
we exclude the fourth feature to make our system more efficient but without
sacrificing accuracy. In Section 5, we show that our system is as effective as
using four features [2], but is also significantly faster.

Recall that we extract five HT'TP features (see Table 1) to perform training.
Since these features are strings, we use the Levenshtein Distance [16] between two
strings to measure their similarity. For parameter keys, Jaccard’s distance [11]
is applied to measure the similarity. Suppose the number of HTTP requests is
N, we can get three N x N matrices based on three clustering feature sets. We
calculate the average value of the three matrices, and regard this average matrix
as the similarity matrix used by the clustering algorithm.



After the clustering, we calculate the average of the |zscore| Of each cluster.
We consider requests from the same cluster as one group and use the average
value to classify this cluster.

4.3 Malware Classification

We use the remaining 50% of malware samples in each family as the testing set.
In order to determine the threshold for classification, we include traffic from 20%
benign apps and 20% malware samples. We use the same method as depicted
in the previous section to calculate the original score of each benign request.
However, when we calculate the zs.. range of benign apps, we use the mean
score (Z) and standard derivation(s) of the 20% malware family we have in

PP _ | z—Z(malware)
previous sections (i.e. |zscore| = Slmalware)

). Then we use the malware zgcore
range and benign zs..e range to determine the threshold for each malware family
in an adaptive manner.

For instance, in the BaseBridge family, the absolute range of zs.ore varies
from 1.0 to 1.3 using malicious traffic from 20% malware samples. Meanwhile,
this value ranges from 1.5 to 10 for the 20% benign apps using the BaseBridge
database. As a result, we can then set the threshold to be 1.4, which is computed
by (1.3 + 1.5)/2. For the testing traffic, if the absolute value of z4core derived by
testing zscore computation is less than the threshold, the app will be classified
into this BaseBridge family.

4.4 Malware Detection

This detection process is very similar to the clustering process. However, the
testing set has been expanded to include traffic from both malicious apps and
5,215 benign apps. The detection phase proceeds like the classification phase.
We use BaseBridge family as an example. After extracting each HTTP request
from PCAP files, we calculate the score based on BaseBridge training database,
similar to classification phase, if the traffic’s absolute value of zscore is greater
than the BaseBridge threshold, we believe this traffic comes from BaseBridge
family, and the traffic request is classified as malicious. Otherwise, the traffic
does not belong to the BaseBridge family. In the end, if the traffic request is not
assigned to any malware families, this request is deemed as benign.

Next, we illustrate how to calculate the detection accuracy for each malware
family through an example using the BaseBridge family. If a request is from
a BaseBridge family app, and it is also identified as belonging to it, then this
is true positive (TP). Otherwise, it is false negative (FN). If the request is not
from BaseBridge family app, but it is identified as belonging to it, then it is false
positive (FP); otherwise, it is true negative (TN). We then calculate the detection

TP+TN ;
TP+TN+FN+FP) and malware detection rate

SUM(TP) )
SUM(FN)+SUM(TP)) of each family.

accuracy (Detection Accuracy =

(Malware Detection Rate =




5 Evaluation

We evaluate the malware classification performance of DROIDCLASSIFIER. We
use 30% of the malware samples for database building, 20% of both malware
and benign apps for threshold calculation. We set up the testing set to use the
remaining 50% of the malware samples and 80% of benign apps. Specifically, we
evaluate the following performance aspects of DROIDCLASSIFIER system.

1. We evaluate classification effectiveness of DROIDCLASSIFIER to classify ma-
licious apps into different families of malware. We present the performance
in terms of detection accuracy, TPR (True Positive Rate), TNR (True Neg-
ative Rate) and F-Measure. Our evaluation experiments with using different
numbers of clusters to determine which one yields the most accurate classi-
fication result.

2. We evaluate the malware detection effectiveness of DROIDCLASSIFIER using
only malware samples as the training and testing sets. We only focus on
how well DROIDCLASSIFIER correctly detects malware. The detection per-
formance is represented by detection accuracy.

3. We evaluate the influence of clustering on malware detection effectiveness
by comparing the detection rates between the best case in DROIDCLASSI-
FIER when the number of cluster is 1000, and DROIDCLASSIFIER without
clustering process.

4. We compare our classification effectiveness with results of other approaches.
We also compare the efficiency of DROIDCLASSIFIER with a similar clustering
system [2].

Our dataset consists of 1,363 malicious apps, and our benign apps are down-
loaded from multiple popular app markets by app crawler. Each app downloaded
from app market is sent to VirusTotal for initial screening. The app is added to
our normal app set only if the test result is benign. Eventually, we get a normal
app set of 5,215 samples belonging to 24 families. A large amount of traffic data
are collected by an automatic mobile traffic collection system, similar to the
system described in [5], in order to evaluate the classification/detection perfor-
mance of DroidClassifier. In the end, we get 500.4 MB of network traffic data
generated by malware samples in total, out of which we extract 18.1 MB of ma-
licious behavior traffic for training purpose. In a similar manner, we collect 2.15
GB of data generated by normal apps for model training and testing.

5.1 Malware Classification Effectiveness Across Different Cluster
Numbers

In our experiment, we perform an evaluation to investigate the sensitivity of
our approach to the number of clusters. Therefore, we strategically adjust the
number of clusters to find the optimal number that is used to classify malware
in the testing data. To do so, we evaluate 13 different numbers of clusters for the
whole dataset, ranging from 200 to 7000 clusters. Table 5 shows the classification
results using 13 different numbers of clusters. When we increase the number of



Table 2. Classification Result with Different Number of Clusters
(TPR=TP/(TP+FN); TNR=TN/(TN+FP); F_Measure = 2 * (TPR * TNR)
/ (TPR + TNR))

Number of
Clusters | TPR | TNR |Detection_Accuracy|F_Measure
200 73.90%46.59% 46.95% 57.15%
400 60.70%[66.45% 66.34% 63.44%
600 60.70%66.61% 66.52% 63.52%
800 70.24%(91.39% 91.12% 79.43%
1000 92.39%94.80% 94.66% 93.58%
1200 90.70%94.45% 94.30% 92.54%
1400 90.76%94.42% 94.28% 92.55%
2000 90.76%(93.79% 93.64% 92.25%
3000 89.08%[93.15% 93.01% 91.07%
4000 89.08%93.11% 92.97% 91.05%
5000 89.08%93.06% 92.92% 91.03%
6000 88.75%92.45% 92.30% 90.56%
7000 88.12%(93.02% 92.79% 90.50%

clusters from 200 to 1000, the detection accuracy also improves from 46.95% to
94.66%, respectively. However, using more than 1000 clusters does not improve
accuracy. As such, using 1000 clusters is optimal for our dataset. In this setting
but without using DroidKungfu and Gappusin, the two families previously known
to be hard to detect and classify [4] , DROIDCLASSIFIER achieves TPR of 92.39%
and TNR of 94.80%, respectively. With these two families, our TPR and TNR
still yield 89.90% and 87.60%, respectively.

Table 3. Malware Classification Performance with 1000 Clusters

FamilyName | TP |[FN| TN FP TPR| TNR Detection |F_Measure
(%) | (%) |Accuracy (%) (%)
BaseBridge 351 [104(11994 44 77.14| 99.63 98.82 86.96
DroidKungFu| 286 | 74 | 7306 4827 79.44| 60.22 60.77 68.51
FakeDoc 229 | 1 (12263 0 99.57/100.00 99.99 99.78
Fakelnstaller | 73 | 1 |11968 451 98.65| 96.37 96.38 97.50
FakeRun 70 | 6 [11890 527 92.11| 95.76 95.73 93.90
Gappusin 66 | 16 | 7170 5241 80.49| 57.77 57.92 67.26
Iconosys 17 | 4 | 8465 4007 80.95| 67.87 67.89 73.84
MobileTx 227 | 1 [12265 0 99.56[100.00 99.99 99.78
Opfake 93 | 4 [12396 0 95.88/100.00 99.97 97.89
Plankton 1025| 51 [11279 138 95.26| 98.79 98.49 96.99
AVG Results 89.90| 87.64 87.60 88.76
AVG Results w/o DroidKungFu & Gappusin|92.39] 94.80 94.66 93.58

5.2 Detection Effectiveness Per Family

Next, we further decompose our analysis to determine the effectiveness of Droid-
Classifier by evaluating our effectiveness metrics per malware family. As shown
in Table 3, in six out of ten families, our system can achieve more than 90% in
F-Measure, meaning that it can accurately classify malicious family as it detects
more true positives and true negatives than false positives and false negatives. As



the table reports, our system yields accurate classification results in BaseBridge,
FakeDoc, Fakelnstaller, FakeRun, MobileTx, Opfake, and Plankton. Specifically,
FakeDoc and MobileTx shows above 99% in F-measure, which means it almost
detect everything correctly in these two families. However, DroidKungFu, Gap-
pusin and Iconosys shows less than 80% F-measure.
Discussion. Our system cannot accurately classify these three families (i.e.
DroidKungFu, Gappusin and Iconosys) due to two main reasons. First, the
amounts of the network traffic for these families are too small. For example,
we only have 38 applications in Iconosys family and among these, only 19 ap-
plications produce network traffic information. We plan to extend the traffic
collection time to address this issue in future works.

Second, the malware samples in DroidKungFu and Gappusin families produce
a large amount of traffic information that shares similar patterns with that of
other families. This leads to ambiguity. We also cross-reference our results with
those reported by DREBIN [4]. Their results also confirm our observation as their
approach can only achieve less than 50% detection accuracy, which is even lower
than that achieved by our system. This is the main reason why we report our
result in Table 5 by excluding DroidKungFu and Gappusin.

Table 4. Classification Performance without Clustering Procedure

FamilyName | TP [FN| TN FP TPR| TNR Detection |F_Measure
(%) | (%) |Accuracy (%) (%)
BaseBridge 437 | 18 |12038 0 96.04|100.00 99.86 97.98
DroidKungFu| 286 | 74 | 2195 9938 79.44| 18.09 19.86 29.47
FakeDoc 229 | 1 [12263 0 99.57[100.00 99.99 99.78
Fakelnstaller | 73 | 1 [12419 0 98.65[100.00 99.99 99.32
FakeRun 75 | 1 [11876 541 98.68| 95.64 95.66 97.14
Gappusin 66 |16 | 2914 9497 80.49| 23.48 23.85 36.35
Iconosys 20 1 (11304 1168 95.24| 90.64 90.64 92.88
MobileTx 227 | 1 [12265 0 99.56(100.00 99.99 99.78
Opfake 84 [ 1312396 0 86.60[100.00 99.90 92.82
Plankton 1049 27 [11302 115 97.49| 98.99 98.86 98.24
AVG Results 93.18| 82.68 82.86 87.62
AVG Results w/o DroidKungFu & Gappusin|[96.48] 98.16 98.11 97.31

5.3 Comparing Detection Effectiveness of Clustering versus
Non-Clustering

In Table 4, we report the detection results when clustering is not performed
(i.e., we configure our system to have a cluster for each request). As shown
in the table, the detection accuracy without clustering are significantly worse
than those with clustering for DroidKungFu and Gappusin. In DroidKungFu
family, the detection accuracy decreases from 60.77% to 19.86% by eliminating
clustering procedure. In Gappusin family, the detection accuracy decreases from
57.92% to 23.85%. However, after removing these two families, it shows better
average detection accuracy than DROIDCLASSIFIER with clustering procedure.
The detection accuracy of the Iconosys family increases from 67.89% to 90.64%
by removing the clustering procedure.



Discussion. Upon further investigation of the network traffic information, we
uncover that the network traffic generated by many benign applications and
that of the Iconosys family are very similar. As such, many benign network
traffic flows are included with malicious traffic flows as part of the clustering
process. However, the overall detection rate including two worst cases (i.e. AVG
results in Table 3 and 4) shows that DROIDCLASSIFIER with clustering is more
accurate than DROIDCLASSIFIER without clustering. In addition, the clustering
mechanism enables the cluster-level classification, which classifies malware as
a group, while the mechanism without clustering classifies malware individu-
ally. This makes DROIDCLASSIFIER with clustering much more efficient than the
mechanism without clustering, in terms of system processing time.

5.4 Comparing Performance with Other Mobile Malware Detectors

In this section, we compare our detection results with other malware detection
approaches, including DREBIN, PERMISSIONCLASSIFIER, Aresu et al. [2], and
Afonso et al. [1].

— DREBIN [4] is an approach that detects malware by combining static analysis
of permissions and APIs with machine learning. It utilizes Support Vector
Machine (SVM) algorithm to classify malware data set.

— PERMISSIONCLASSIFIER, on the other hand, uses only permission as the fea-
tures to perform malware detection. During the implementation, we use the
same malicious applications used to evaluate DREBIN. Then we use APK-
TOOL [29] to find the permissions called by each application. We randomly
separate the data set as training and testing set. SVM classification approach
is employed to perform malware classification.

— Aresu et. al [2] extract malware signatures by clustering HTTP traffic, and
they use these signatures to detect malware. We implement their clustering
method, and compare the result with that produced by our system.

— Afonso et al. [1] develop a machine learning system that detects Android
malicious apps by using the dynamic information from system calls and
Android API functions. They employ a different dynamic way to detect
malware and also use Android Malware Genome Project [36] as the dataset.

Table 5 reports the results of our evaluation. DREBIN uses more features
than PERMISSIONCLASSIFIER, including API calls and network addresses. As a
result, DREBIN outperforms PERMISSIONCLASSIFIER in detection accuracy. We
also compare the results of our system against those of 10 existing anti-virus
scanners [4]: AntiVir, AVG, BitDefender, ClamAV, ESET, F-Secure, Kasper-
sky, McAfee, Panda, Sophos. We report the minimum, maximum, and average
detection rate of these 10 virus scanner in columns 5 to 7 (AV1 — AV10).

The most time consuming part of the hierarchical clustering is the calculation
of the similarity matrix. Aresu et. al [2] use one more feature, the aggregation
of values in Request-URI field, to build their clustering system. We implement
their method and evaluate the time to compute the similarity matrix. We then
compare their time consumption for matrix computation of each malware family



Table 5. Detection Rates of DroidClassfier and Ten Anti-Virus Scanners

Method Droid |Permission|Drebin Aresu Afonso AV1 - AV10
Classifier| Classifier et al. et al. | Min | Max | Avg.
Full Dataset| 94.33% 89.30% [93.90%[60% - 100% [96.82% 3.99%[96.41%[61.25%

with that of DROIDCLASSIFIER and report the result in Table 6. For BaseBridge,
DroidKungFu, FakeDoc and Gappusin, our approach incurs 60% to 100% less
time than their approach while yielding over 94% detection rate. For other fam-
ilies, the time is about the same. This is due to the fact that those families do
not generate traffic with Request-URI field.

Table 6. Time Comparison of Matrix Calculation (Experiments run on Apple
MacBook Pro with 2.8GHz Intel Core i7 and 16G memory)

Family Name [Number of Requests|DroidClassifier | Aresu et al.
(seconds) (seconds)
Plankton 1075 361 361
BaseBridge 454 37 10230
DroidKungFu 359 86 3520
FakeDoc 229 9 820
Opfake 96 8 8
Fakelnstaller 73 9 9
FakeRun 75 10 10
Gappusin 81 11 264
MobileTx 227 61 61
Iconosys 20 9 9

Drebin and PermissionClassifier are the state-of-the-art malware detection
system with high detection accuracy. Our approach is dynamic-analysis based
approach. In the literature, as far as we know, there is a lack of comparative work
using dynamic analysis on a large malware dataset to evaluate malware detection
accuracy. Therefore, though Drebin and PermissionClassifier use static analysis
features, we compare with them in terms of malware detection rate to prove
the detection accuracy of DroidClassifier. As our proposed classifier is network-
traffic based classifier, the main advantage of our classifier is that we can deploy
our system on gateway routers instead on end user devices.

Work by Aresu et al. uses clustering to extract signatures to detect malware.
We have emphasized the difference between our work and Aresu before. In terms
of comparison, we compare the detection rate and time cost with them. Our work
can achieve over 90% detection rate. Even though the purpose of our clustering
is different, we can still compare the clustering efficiency. For BaseBridge, Droid-
KungFu, FakeDoc and Gappusin, our approach, in terms of clustering time, is
more efficient than their approach by 60% to 100%.

Work by Afonso et al. [1] can achieve the average detection accuracy of
96.82%. So far, the preliminary investigation of detection effectiveness already
indicates that our system can achieve nearly the same accuracy. Unlike their
approach, our system can also classify samples into different families, which is
important, as repackaging is a common form to develop malware. Their approach



still requires that a malware sample executes completely. In the case that it does
not (e.g., interrupted connection with a C&C server or premature termination
due to detection of malware analysis environments), their system cannot per-
form detection. However, our network traffic-based system can handle partial
execution as long as the malware attempts to send sensitive information. The
presence of our system is also harder to detect as it captures the traffic on the
router side, preventing certain malware samples from prematurely terminating
execution to avoid analysis.

6 Limitations and Future Work

In this paper, we use HTTP header information to help classify and detect mal-
ware. However, our current implementation does not handle encrypted requests
through HTTPS protocol. To handle such type of requests in the future, we
may need to work closely with runtime systems to capture information prior to
encryption, or use on-device software such as Haystack [23] to decrypt HTTPs
traffic.

Our system also expects a sufficient number of requests in the training set.
As shown in families such as Iconosys, insufficient data used during training can
cause the system to incorrectly classify malware and benign samples. Further-
more, to generate network traffic information, our approach, similar to work by
Afonso et al. [1], relies on Monkey to generate sufficient traffic. However, events
triggered by Monkey tool are random, and therefore, may not replicate real-
world events especially in the case that complex event sequences are needed to
trigger malicious behaviors. In such scenarios, malicious network traffic may not
be generated. Creating complex event sequences is still a major research chal-
lenge in the area of testing GUI- and event-based applications. To address this
issue in the future, we plan to use more sophisticated event sequence generation
approaches to including GUI ripping and symbolic or concolic execution. [13].
We will also evaluate the minimum number of traffic requests that are required
to induce good classification performance in future works.

Currently, our framework can only detect new samples from known fami-
lies if they happen to share previously modeled behaviors. For sample requests
from totally unknown malware samples, our framework can put all these similar
requests into a cluster. This can help analysts to isolate these samples and sim-
plify the manual analysis process. We also plan to extract other features beyond
application-layer header information. For example, we may want to focus on the
packet’s payload that may contain more interesting information such as C&C
instructions and sensitive data. We can also combine the network traffic infor-
mation with other unique features including permission and program structures
such as data-flow and control-flow information.

Similar to existing approaches, our approach can still fail against determined
adversaries who try to avoid our classification approach. For example, an ad-
versary can develop advanced techniques to dynamically change their features
without affecting their malicious behaviors. Currently, machine-learning based
detection systems suffer from this problem [32]. We need to consider how adver-



saries may adapt to our classifiers and develop better mobile malware classifica-
tion and detection strategies.

We are in the process of collecting newer malware samples to further evaluate
our system. We anticipate that newer malware samples may utilize more complex
interactions with C&C servers. In this case, we expect more meaningful network
behaviors that our system can exploit to detect and classify these emerging
malware samples.

Lastly, our system is lightweight because it can be installed on the router
to automatically detect malicious apps. The system is efficient because our ap-
proach classifies and detects malware at the cluster granularity instead of at each
individual request granularity, resulting in much less classification and detection
efforts. As future work, we will experiment with deployments of DROIDCLASSI-
FIER in a real-world setting.

7 Conclusion

In this paper, we introduce DROIDCLASSIFIER, a malware classification and de-
tection approach that utilizes multidimensional application-layer data from net-
work traffic information. An integrated clustering and classification framework
is developed to take into account disparate and unique characteristics of differ-
ent mobile malware families. Our study includes over 1,300 malware samples
and 5,000 benign apps. We find that DROIDCLASSIFIER successfully identifies
over 90% of different families of malware with 94.33% accuracy on average.
Meanwhile, it is also more efficient than state-of-the-art approaches to perform
Android malware classification and detection based on network traffic. We envi-
sion DROIDCLASSIFIER to be applied in network management to control mobile
malware infections in a large network.
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