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ABSTRACT
With the explosive increase in wireless devices, physical-layer sig-

nal analysis has become critically beneficial across distinctive do-

mains including interference minimization in network planning,

security and privacy (e.g., drone and spycam detection), and mobile

health with remote sensing. While SDR is known to be highly ef-

fective in realizing such services, they are rarely deployed or used

by the end-users due to the costly hardware ∼1K USD (e.g., USRP).

Low-cost SDRs (e.g., RTL-SDR) are available, but their bandwidth

is limited to 2-3 MHz and operation range falls well below 2.4 GHz

– the unlicensed band holding majority of the wireless devices. This

paper presents SDR-Lite, the first zero-cost, software-only soft-

ware defined radio (SDR) receiver that empowers commodity WiFi

to retrieve the In-phase and Quadrature of an ambient signal. With

the full compatibility to pervasively-deployed WiFi infrastructure

(without any change to the hardware and firmware), SDR-Lite aims

to spread the blessing of SDR receiver functionalities to billions of

WiFi users and households to enhance our everyday lives. The key

idea of SDR-Lite is to trick WiFi to begin packet reception (i.e.,

the decoding process) when the packet is absent, so that it accepts

ambient signals in the air and outputs corresponding bits. The bits

are then reconstructed to the original physical-layer waveform, on

which diverse SDR applications are performed. Our comprehensive

evaluation shows that the reconstructed signal closely reassem-

bles the original ambient signal (>85% correlation). We extensively

demonstrate SDR-Lite effectiveness across seven distinctive SDR

receiver applications under three representative categories: (i) RF

fingerprinting, (ii) spectrum monitoring, and (iii) (ZigBee) decod-

ing. For instance, in security applications of drone and rogue WiFi

AP detection, SDR-Lite achieves 99% and 97% accuracy, which is

comparable to USRP.
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1 INTRODUCTION
The body of wireless devices has been growing explosively to pene-

trate into every corner of our living spaces and impact nearly every

aspect of our daily lives. This is anticipated to be further inten-

sified with the emergence of the Internet of Things (IoT). Lately,

the capability to analyze and diagnose wireless signals has been

demonstrated to be critically beneficial in various circumstances

including: (i) network management and operation by minimizing

interference [6], (ii) security and privacy protection with unautho-

rized RF activity detection [22], and (iii) mobile healthcare with

advanced remote sensing [5].

In highly heterogeneous wireless environment, software defined

radio (SDR) is widely considered a de facto solution for signal anal-

ysis, by directly accessing the fine-grained physical-layer signal

regardless of the underlying wireless technologies – literature have

shown its effectiveness through a wide range of applications such

as spectrum monitoring for network operation [51], drone detec-

tion [49] for security, and activity monitoring for healthcare [15].

Despite the significant benefits, SDRs are rarely adopted in prac-

tice and barely used by end-users. This is mainly due to the costly

hardware ranging between hundreds to thousands of USD [53].

While low-cost SDRs, e.g., RTL-SDR variants [44–46, 57], are avail-

able in the market, the low-end hardware limits their bandwidth

to 2-3 MHz and the operation range well below the most popular

frequency band of 2.4 GHz unlicensed spectrum (∼1.7 GHz); thus
not supporting most of the wireless communication standards (e.g.,

WiFi, BLE, ZigBee) and a majority of everyday wireless devices such

as wearables, earphones, drones, baby monitors, garage openers,

and radio controlled cars.

This paper presents SDR-Lite, the first software-only SDR re-

ceiver using commodity WiFi, without any additional hardware

or modification of firmware. The key idea of SDR-Lite is to trick

WiFi to begin packet reception (i.e., the decoding process) when

the packet is absent, which is achieved by generating emulated
packet header – a fake header that does not have a payload. This
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enables commodity WiFi to output the ‘decoded’ bit sequence corre-

sponding to the ambient wireless signal. SDR-Lite performs signal
reconstruction on this bit sequence – essentially reverse-engineering
the decoding process to closely recover (>85% correlation) the In-

phase and Quadrature (I/Q) signals of the original waveform. Thus

SDR-Lite imitates SDR receiver, where the reconstructed signal

can be facilitated by diverse set of SDR applications.

The effectiveness of SDR-Lite was extensively and comprehen-

sively evaluated by implementing seven distinctive SDR receiver ap-

plications under three representative categories: (i) RF fingerprint-

ing, (ii) spectrum monitoring, and (iii) (ZigBee) decoding. Among

many encouraging results, SDR-Lite achieves 97% in drone detec-

tion (for security), which is comparable with USRP (99.6%). Through-

out the applications, SDR-Lite was shown to successfully capture

various heterogeneous signals including standard communication

signals (BLE and ZigBee), proprietary signals (toy RC car and drone),

and non-communication waveform (microwave).

To the best of our knowledge, SDR-Lite is the first to enable

SDR receiver functionalities on a commodity WiFi. In particular,

SDR-Lite empowers WiFi to effectively capture the physical-layer

signal of ambient wireless, thereby spreading the blessing of SDR

receiver to billions of WiFi devices and households to enhance our

everyday lives. In essence, SDR-Lite redefines the capability of

existing WiFi devices and sheds new light on various new direc-

tions given the ability of reconstructing fine-grained physical-layer

waveform of arbitrary signals. Our contribution is three-fold.

• We design SDR-Lite, a first of its kind, zero-cost SDR re-

ceiver using commodity WNIC, without any change in hard-

ware, firmware. This ensures immediate and wide applica-

bility of SDR-Lite on existing WiFi infrastructure.

• SDR-Lite introduces two key techniques: OFDM emulation

and signal reconstruction. The former triggers SDR-Lite,
where it mimics an OFDMwith another OFDM signal, across

modulations (e.g., 64 vs. 16 QAM) and standards (802.11n vs.

g). The latter rebuilds the signal from the decoded bits.

• We implement SDR-Lite on commodity WiFi devices and

USRP B210 for in-depth analysis. SDR-Lite’s performance

was validated in seven SDR receiver applications across

three representative categories of RF fingerprinting, spec-

trum monitoring, and decoding where we achieved >97%

accuracy of drone detection and >94% for WiFi device iden-

tification.

2 MOTIVATION
SDR-Lite offers a wide range of benefits ranging from improved

IoT to privacy protection.

Figure 1: Smart farm data collection

2.1 Mobile IoT Data Collection
A growing number of smart IoT applications and services are en-

abled by real-time data collected from IoT devices (sensors). ZigBee

decoding functionality of SDR-Lite allows to transform WiFi de-

vices (e.g., laptops, mobile phones) into an IoT reader (demonstrated

in Section 7.3). Figure 1 illustrates a data collection scenario in a

smart farm application. We use a handheld WiFi device (e.g., your

mobile phone) to directly read data from the sensors of a smart

farm, enabling a real-time and mobile interaction with IoT devices.

(a) Drone detection with public WiFi

infrastructure

(b) Spycam detection

Figure 2: Detecting unauthorized devices
2.2 Unauthorized Device Detection
Drone Detection. The growing popularity of these Unmanned

Aerial Vehicle (UAV, often called drone) have aroused major security

[59, 60] and privacy [13] concerns in private sectors as well as in

national defence. SDR-Lite enables a commodity WiFi device to

detect and identify a drone’s RF signal required to communicate

with its controller (demonstrated in Section 7.5). As in Figure 2(a),

SDR-Lite turns public WiFi APs, widely deployed in urban areas,

into a city-scale drone detection system.

Spycam Detection. Crimes using spycams have been on the rise

[47], yet, to effectively detecting theseminiature andwireless device

is challenging. SDR-Lite can be use to detect various spycams by

distinguishing the unique signatures of different RF chips (demon-

strated in Section 7.4). As depicted in Figure 2(b), SDR-Lite turns a
readily-owned mobile phone into a personal defense system against

spycams.

Figure 3: In-home network management

2.3 Network Management
SDR-Lite can be used to monitor the RF spectrum of ISM band

(demonstrated in Section 7.2). With a plethora of IoT devices, it

is important to plan the wireless network such that the interfer-

ence is minimized. As depicted in Figure 3, SDR-Lite provides

spectrum monitoring functionality to capture various RF signals

including non-communication waveforms in 2.4 GHz which serves

as a personalized network manager without the expensive SDRs or

spectrum analyzers.
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Figure 4: Initiator emulates WiFi header such that SDR-Lite
accepts ambient signal as payload and output bits accord-
ingly. SDR-Lite reconstructs the ambient signal from the out-
put bits.

3 SDR-LITE OVERVIEW
Figure 4 illustrates the overall workflow of SDR-Lite. SDR-Lite in-
volves two simple steps. Step I (Section 4): SDR-Lite is triggered

by a packet from another commodity WiFi, e.g., WiFi Access Point

(AP), called Initiator. The packet has a short payload only holding

emulated WiFi packet header – i.e., a combination of payload sym-

bols that closely approximates (i.e., emulates) a real WiFi header

(more on emulation in the next section). Step II (Section 5): Upon
reception of the emulated header, SDR-Lite begins decoding what

follows – CRC and ambient signal in the air – and outputs the cor-

responding bit stream. Finally, SDR-Lite reconstructs the ambient

physical-layer signal from the bit sequence, which can then be fed

into various SDR applications.

We note that the concept of emulation was first proposed in

WEBee [39], for cross-technology communication (CTC) fromWiFi

to ZigBee. In essence, by carefully selecting the payload bytes, the

WiFi signal closely imitates the ZigBee signal waveform which is

received at the commodity ZigBee device. Inspired by this, we newly

introduce OFDM emulation (to build emulated header), which is

an emulation between OFDM WiFi variants – e.g., 802.11n and

g. This imposes unique challenges including the discrepancies in

OFDM symbol structure and constellation points. OFDM emulation

is one of our key contributions and primary techniques that enable

SDR-Lite.

2.5×Long Symbol PHY
𝟖𝒖𝒔 𝟒𝒖𝒔

Preamble

𝟖𝒖𝒔

MAC
𝟒𝒖𝒔

10×Short Symbol

Figure 5: WiFi (802.11g) header structure

4 WIFI HEADER EMULATION
Figure 5 shows the standard-defined WiFi header structure, taking

802.11g as an example. The header consists of three parts – pream-

ble, PHY, and MAC. Preamble is used for packet detection, synchro-

nization, and channel estimation. PHY header carries physical-layer

information, i.e., modulation type, code rate, and packet length.

MAC header holds link-layer specifics such as protocol version and

packet type. Upon receiving a WiFi header, a receiver begins de-

coding the payload following the header, for the duration of packet

length, using the modulation and code rate specified in the header.

Initiator emulates the entire header (preamble, PHY,MACheader),

which triggers the decoding process upon reception. However, as

the emulated header sits within the payload, the decoding is instead

applied to the ambient signal that follows the packet. This yields

output bit sequence, from which the received ambient signal can

be reconstructed. We note that the reception of emulated header

requires bypassing the original WiFi header that always precedes

the emulated header in the payload; otherwise, emulated header

will simply be decoded as payload. Below we first discuss how to

bypass the original header, followed by the details on generating

emulated header.
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Figure 6: OFDM Emulation

4.1 Bypassing the Original Header
In essence, SDR-Lite bypasses the original header in the Initiator’s

packet while accepting the emulated header, when their center

frequencies are different. In other words, the Initiator generates

an emulated header with the center frequency deviating from its

own. One practical way to achieve this is to set the Initiator to 40

MHz-bandwidth 802.11n, which is commonly supported in typical

WNICs on the market. Among the 40 MHz, a partial spectrum of

20 MHz is used to make the emulated header, where the center

frequency differs from the Initiator. Figure 6(a) demonstrates an

example setting used in our implementation where the emulated

header uses 52 subcarriers (=16.25MHz, except guard band), ranging

[-55,-3]. The center frequency of the emulated header, which is 2.417

GHz (i.e., WiFi channel 2), is clearly apart from that of the entire

40 MHz. Therefore, SDR-Lite operating at WiFi channel 2 receives

the emulated header while bypassing the original header. SDR-Lite
on other channels may as well be supported by varying Initiator

channel and subcarrier allocation for emulation.

4.2 OFDM Emulation
Emulated header lies within the payload of the Initiator packet.

SDR-Lite aims to minimize emulation errors under WiFi hardware

constraints, including the discrepancy in the symbol structure and

constellation points (due to the disparate modulations) between

header and the payload. We address the discrepancy in symbol

structures via symbol mapping and disparate constellation points

through subcarrier constellation mapping.

4.2.1 Symbol Mapping. Figure 6(b), in the x-axis, illustrates how

each part of the header symbols are mapped to (i.e., emulated by)

payload symbols. As the figure shows, PHY and MAC are one-to-

one mapped to (and emulated with) one payload symbol, depicted

as symbol 5 and 6. This is because PHY and MAC headers share

the same symbol structure as the payload – i.e., 3.2 𝜇s symbol plus

0.8 𝜇s cyclic prefix (CP). However, the preamble symbols structures

significantly differ from the payload. For instance, short and long

symbols have duration of 0.8 𝜇s and 3.2 𝜇s, respectively, both of

which do not have CP. To tackle this, we provide in-depth discus-

sion on mapping preamble symbols to payload symbols, essentially

enabling emulation under symbol structure discrepancy.
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𝟎. 𝟖𝒖𝒔 𝟑. 𝟐𝒖𝒔

CP
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(b)
Payload Symbol

S S S S S

CP

Equal 

𝟎. 𝟖𝒖𝒔 𝟑. 𝟐𝒖𝒔

Payload Symbol

Figure 7: (a) 5 × short symbols (=S) can be emulated with (b)
a payload symbol + CP

Short Symbol ↔ Payload Symbol Mapping. As Figure 7 illus-
trates, a short symbol duration is only 0.8 𝜇s while payload symbol

lasts for 3.2 𝜇s. Moreover, a payload symbol is prepended with a 0.8

𝜇s CP, which is a copy of the last 0.8 𝜇s of payload symbol (to avoid

inter-symbol interference). Meanwhile, short symbol does not have

CP. Under the discrepancy lies a hidden emulation opportunity

by considering short symbols in a batch of five. This is shown in

Figure 7: payload symbol (3.2 𝜇s) emulates 2
𝑛𝑑

-5
𝑡ℎ

short symbols

(4x0.8=3.2 𝜇s). By emulating 5 short symbols, the CP requirement is

inherently satisfied, since the first short symbol (at the place of CP)

is equivalent to the 5th short symbol. A WiFi preamble contains 10

short symbols, which can be emulated with two payload symbols.

𝟏. 𝟔𝒖𝒔 𝟑. 𝟐𝒖𝒔

0.5L

Equal 

𝟑. 𝟐𝒖𝒔

L L

CP1 CP2Payload Symbol 1 Payload Symbol 2

Equal 

𝟎. 𝟖𝒖𝒔 𝟑. 𝟐𝒖𝒔 𝟎. 𝟖𝒖𝒔 𝟑. 𝟐𝒖𝒔

(a)

(b)

Figure 8: (a) 21/2 long symbol (=L) sequence in the preamble
(b) Mapping to two payload symbols for emulation.

Long Symbol ↔ Payload Symbol Mapping. As in Figure 8(a),

there are 2
1/2 long symbols in the preamble. The preceding

1/2 long
symbol matches with the latter

1/2 of the following long symbols,

represented in lighter blue, while the former half is in darker blue.

Figure 8(b) clearly shows that 2
1/2 long symbol sequence can be

represented by two payload symbols. Moreover, for each payload

symbol, the last 0.8 𝜇s matches the initial 0.8 𝜇s, which complies

with payload CP requirement. This demonstrates that 2
1/2 long

symbol sequence can also be effectively emulated with payload

symbols.

4.2.2 Subcarrier Constellation Mapping. Given the mapped sym-

bols, we turn to emulating subcarriers via constellation mapping.

As an example, let SDR-Lite be 802.11g: the preamble and PHY

are modulated in BPSK, while MAC uses 16 QAM. On the contrary,

payload has a wide selection of modulation options depending on

Modulation and Coding Scheme (MCS). Among them we adopt 64

QAM, the constellation with the finest granularity, to minimize

error in constellation mapping; thus, the Initiator is configured to

64 QAM of code rate 5/6 (802.11n MCS 7).

Preamble/PHYHeader (BPSK). Figure 9(a) illustrates the pream-

ble (long + short symbol) and PHY header’s BPSK constellation

points in relation to the 64 QAM points used in the payload. To

minimize the emulation error, 64 QAM constellation points closest

to BPSK should be selected for emulation, under the restriction

imposed by the code rate. Figure 9(b) illustrates the emulation of

short symbol; 5/6 code rate allows to select only up to 4 bits out

Long Symbol/PHY (BPSK)
Short Symbol (BPSK)

+

X

X+
100100101100
+

(a)

(b)

(c)

100101101101

+

X

X
100010

100110

101010

101110

MAC (16 QAM)

(d)

I

Q

I

Q

Figure 9: Subcarrier constellation mapping minimizes the
error under constellation discrepancy between header and
payload symbols

of 6 bits assigned per 64 QAM point, where the remaining 2 bits

are uncontrollable (generated by coding). Under this constraint, we

achieve the minimum emulation error by selecting the 4 bits in

common in the four closest points (in blue). This ensures emulation

to one of the four closest points. We note this mechanism effec-

tively leverages an intrinsic feature of the 64 QAM points where the

adjacent points differ by only 1 bit (i.e., gray coding). The same idea

applies when emulating long symbol and PHY. As in Figure 9(c), se-

lecting the four common bits (in red) among the four closest points

ensures emulation to one of them, which minimizes the emulation

error.

MACHeader (16 QAM). The dotted box in the Figure 9(d) depicts

the constellation mapping of 16 QAM used in the MAC header. This

follows the samemechanism as in BPSK, where four closest 64 QAM

points are mapped to each 16 QAM point. Like BPSK constellation

mapping, this also effectively minimizes the emulation error under

practical WiFi hardware constraints.

Payload
Bits Scrambler Convolutional

Encoder Interleaver
𝑿 𝒀

𝑪 𝑷

WiFi EncodingCoding Emulation

Constellation

Figure 10: Coding emulation is a reverse of WiFi encoding.

4.3 Coding Emulation
The channel coding of WiFi introduces redundancy, which imposes

challenges for emulation in a reverse order [39]. Figure 10 depicts

the encoding mechanism for WiFi in blue arrows, which is pro-

cessed per-symbol basis. We note that the OFDM emulation outputs

6 coded bits per subcarrier (corresponding to a 64 QAM point). One

symbol of the Initiator, set to 40 MHz 64 QAM 802.11n, has 108 data

subcarriers. This translates to a total of 648 (=108×6 bits/subcarrier)
coded bits, denoted 𝒀 . Coding emulation, shown as the red arrow

in Figure 10, is to find the pre-coded bit sequence, 𝑿 , that yields 𝒀
via WiFi encoding (blue arrows). In other words, we compute 𝑿 for

a given 𝒀 – essentially reverse-engineering the interleaver and the

convolutional coding.

The coded bits of 𝑌 is generated from 540 (=648x5/6 code rate)

input bits of𝑿 plus 6 bits carried over from the previous symbol,𝑿𝒃 .

Let Galois Finite field matrices (GF(2)) of 𝑷 and [𝑪𝒃 𝑪] represent
the interleaving and convolutional coding matrices, respectively.

𝑪𝒃 is the first 6 columns of the convolutional matrix convoluted

𝑿𝒃 . Then, the WiFi encoding is formulated as:

𝑷 [𝑪𝒃 𝑪]
[
𝑿𝒃
𝑿

]
= 𝑷𝑪𝒃𝑿𝒃 + 𝑷𝑪𝑿 = 𝒀 , (1)
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where 𝑷𝑪𝒃𝑿𝒃 is a constant, since 𝑿𝒃 is given from the previous

symbol while 𝑪𝒃 and 𝑷 are both fixed by the WiFi standard. Then,

we let 𝒀 ′ = 𝒀 − 𝑷𝑪𝒃𝑿𝒃 and reformulate Eq. (1) into a linear equa-

tion:

(𝑷𝑪)𝑿 = 𝒀 ′, (2)

𝑷𝑪 is 648x540 matrix. To emulate 54 subcarriers (20 MHz) each

with 4 selected bits (as per the subcarrier constellation mapping), a

total of 216 are chosen among 648 output bits in 𝒀 . Let the 216 bit
subvector be 𝑌216 and corresponding 𝑷𝑪 matrix be (𝑷𝑪)216. Then,
(𝑷𝑪)216𝑿 = 𝒀216. Finally, (𝑷𝑪)216 matrix is full rank based on the

standard [64]. Given 𝒀 , we get 𝑿 considering the interleaver and

convolutional encoder.
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Figure 11: An example of emulated header in frequency do-
main

Figure 11 demonstrates an example of the Initiator emulating

WiFi header, which is represented in the frequency domain. Fig-

ure 11 (a) illustrates the Short symbol (BPSK), where long symbol

and PHY are similar as they are also in BPSK. MAC (16 QAM) is

shown in Figure 11 (b). While largely similar, the difference be-

tween the two signals indicates the emulation error from disparate

constellation points. It is worth noting that the payload bits can be

computed from 𝑿 by reversing the scrambling block, which is a

straightforward process (here we omit for brevity) as the scrambling

is simply an XOR operation with a given bit sequence of scrambling

seed. The scrambling seed can be easily tracked on commodity

WNICs – e.g., widely used Atheros WNIC (e.g., AR9380) increases

the seed by one for every packet transmission [32].

4.4 Emulation Imperfections
Uncontrollable Pilot Subcarriers. As per WiFi standard, the

three pilot subcarriers in WiFi have a set of preassigned values

for any given symbol index. This is enforced by the hardware and

thus cannot be altered. That is, pilot subcarrier values are uncon-

trollable which may incur errors if they do not match the emulation.

We minimize this impact by carefully selecting the symbol index

from which the Header emulation begins. Specifically, we exploit

the sequence of pilot values that best match the emulated value. We

find that, by beginning the header emulation from the 3
𝑟𝑑

symbol,

the preassigned values for three pilot subcarriers closely matches

the corresponding subcarrier values in the emulated header. This

matches 8 out of 9 values in the emulated header, where, from our

experiment, the impact of a single mismatch was negligible. To

conclude, impact of pilots are minimized by simply emulating the

header beginning from the 3
𝑟𝑑

payload symbol.

Impact on Equalization. WiFi estimates the channel from the

long symbol, which is used for the equalization in decoding. That

is, slight emulation error due to constellation discrepancy in the

long symbol leads to imperfect channel estimation and equalization,

thereby lowering SNR. We experimentally evaluate the impact of

emulation imperfections including uncontrollable pilot subcarriers

and equalization in Section 7.

Ambient signal I/Q CP Function
0.8 us

4 us

IFFT
/FFT

Bit Encoder
/Bit Decoder

Decoded
bits

Ambient I/Q signal to bits (WiFi decoding)

Bits to I/Q signal (SDR-Lite signal reconstruction)

Payload
Bits Scrambler Convolutional

Encoder Interleaver
𝑿 𝒀

𝑪 𝑷

WiFi EncodingCoding Emulation

Constellation

Figure 12: Ambient signal reconstruction.

5 SIGNAL RECONSTRUCTION AND APPS
We discuss reconstructing the ambient I/Q signals from the received

bit streams and signal processing for SDR receiver applications.

5.1 Ambient Signal Reconstruction
Upon receiving the emulated header, SDR-Lite begins receiving

(i.e., decoding) ambient signals for the duration of LENGTH (de-

fined in PHY). This process is drawn in Figure 12 as grey arrows,

where it outputs corresponding decoded bit sequences. We note

that this is the standardized WiFi (e.g., 802.11g) decoding which

is automatically processed on the WNIC – CP removal, FFT, and

decoder including interleaver, convolutional decoder, and scram-

bler. Ambient signal reconstruction is a process of reversing the

decoded bit sequence back to the original ambient I/Q signal, on

which SDR applications are performed. This is depicted in green

arrows in Figure 12, which essentially follows the WiFi encoding

mechanism as we discuss the details in the following.

Signal reconstruction first performs bit encoding, which includes

scrambling, convolutional encoding, and interleaving. The inter-

leaving is a fixed operation defined in theWiFi standard. Scrambling

and convolutional encoding take the scrambling seed and the coding

rate as the parameter, respectively. We note that both the scram-

bling seed and coding rate are controlled by the OFDM emulation

(thus known). Therefore, scrambling and convolutional encoding

operations are also determined. The bit sequence obtained from the

bit encoding are mapped to the constellation points (e.g., 64 QAM)

to yield signal I/Q values. These I/Q signals are in frequency do-

main (allocated to subcarriers) from which the time domain signal

is reconstructed through the inverse FFT. This outputs 3.2 𝜇𝑠 time

domain signal, which corresponds to a WiFi symbol without CP.

Lastly, CP is prepended at the beginning of the symbol by copying

the last 0.8 𝜇s. This recontructs the ambient signal for the WiFi

symbol duration of 4 𝜇𝑠 . This process is repeatedly performed for

the duration of LENGTH in the emulated header.

Figure 13 demonstrates an example of a reconstructed signal. It

has inevitable errors and phase rotation introduced by the WiFi

hardware. In the following we discuss the three different types of

errors (CP, boundary, and convolutional error) as well as how to

selectively leverage the signal portion (i.e., white box in Figure 13),

so as to maximize the correlation between the original and the

reconstructed signal. This is validated to be highly effective in our

evaluations. For instance, SDR-Lite achieves <5% symbol error rate

for ZigBee decoding.
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Figure 13: Reconstructed signal and errors.

CP and Boundary Error. The first and most significant source

of error is the CP, indicated as dark gray in Figure 13. The CP

portion (the first 0.8 𝜇s) is overwritten by the last 0.8 𝜇s of the

symbol, and thus the original ambient signal at the place of CP

is entirely lost. The second is the boundary error in light gray in

Figure 13. This occurs due to the cyclic property of the Discrete

Fourier Transform (DFT) which necessitates the beginning and

end of the symbol to be always identical, deviating the symbol

boundaries of the reconstructed signal from the original signal. If we

let reconstructed signal be 𝑥 [𝑛] = ∑
𝑘
𝑋 [𝑘]𝑒 𝑗2𝜋𝑘𝑛/𝑇 , 𝑥 [0] = 𝑥 [𝑇 ]

where 𝑇 is the symbol duration. Moreover, the boundary error is

inversely proportional to the bandwidth. Intuitively, this is because

higher frequency signal better allows abrupt changes in a shorter

duration (thus smaller boundary error). To sum up, let 𝑓𝐻 be the

highest positive frequency component of the signal (e.g., 1 MHz for

ZigBee), we set the boundary error plus CP to 1.5/𝑓𝐻 (= 1.5 𝜇s in

ZigBee) based on our experiment, which achieves 0.86 correlation

between ideal and recovered signals.

Convolutional Error. As the convolutional encoding limits the

degree of freedom, WiFi is unable to represent all kinds of ambient

signals. In other words, if the ambient signal do not fit into any

WiFi code word, it is decoded to the code word with the lowest

hamming distance from the ambient signal. As in Figure 13, this in-

duces the convolutional error between the reconstructed signal and

the original ambient signal waveform. SDR-Lite effectively sup-

presses the convolutional error by leveraging the unique features

of Viterbi decoding and Gray coding in WiFi. That is, the maximum

likelihood property of the Viterbi decoding optimally selects the

code word with the lowest hamming distance. By Gray coding,

this minimum bit difference indicates closeness in the constellation

point, or similarity to the original ambient signal.

The reconstructed signal is also phase-rotated, due to the am-

bient noise at the pilot subcarrier. This is because WiFi combats

phase error by compensating the phase difference between the re-

ceived pilot subcarrier and the reference value. In SDR-Lite, pilot
subcarriers are populated by the ambient noise, causing a random

phase rotation to the reconstructed symbol. We note that the phase

rotation causes issues in some application (e.g., decoding) and but

not others (e.g., RF fingerprinting and spectrum monitoring). Next,

we discuss further processing of the reconstructed signal depending

on the applications.

5.2 Application I: RF Fingerprinting
The reconstructed signals closely approximate the original sig-

nals, thereby keeping the unique physical-layer signature intact.

This indicates that the reconstructed signal can be used for RF

fingerprinting. Despite the random symbol phase rotation, an en-

tire symbol is rotated by an fixed phase shift, keeping the relative

phases between the subcarriers consistent with the original signal.

We note that the amplitude is unaffected by the phase rotation. In

other words, the amplitude and relative phases among subcarriers

of the emulated signal directly reflect the physical-layer signature

of the original signal. Capitalizing on this property, SDR-Lite en-
ables various RF fingerprinting applications using commodity WiFi.

Section 7 demonstrates these applications including smartphone

identification, and rogue WiFi AP detection.

I

Q

(a) 16 QAM (b) Waterfall

BLE Signal

Figure 14: Waterfall from signal. Can be used for Spectrum
analysis.

5.3 Application II: Spectrum Monitoring
Spectrum monitoring investigates diverse activities on the wireless

channel via fine-grained power measurements. Since the power

is unaffected by the phase rotation, the reconstructed signals can

be directly used without further processing. Here, the precision

of the power measurement largely depends on the modulation of

the reconstructed signal. Figure 14(a) illustrates an example of 16

QAM that yields a 3-level precision (blue, green, yellow) based on

constellation points. We note that the precision can be enhanced

simply by adopting a higher order QAM (e.g., 10 levels for 64 QAM).

Figure 14(b) shows a waterfall plot obtained from 16 QAM recon-

structed signal capturing a 0.192 ms-long signal beginning at the

4
𝑡ℎ

symbol. From the subcarrier index on which the signal is re-

siding, this signal is identified as a BLE with the central frequency

and bandwidth of approximately 2.422 GHz (=BLE channel 9) and

1 MHz, respectively. In particular, SDR-Lite offers spectrum mon-

itoring functionality with timing and frequency precision of 4 𝜇s

and 312.5 KHz, corresponding to symbol duration and subcarrier

spacing, respectively.

The duration of the monitoring (i.e., the length of the recon-

structed signal) is determined by the 12-bit LENGTH field (in

802.11g) in the emulated header. This allows SDR-Lite to freely

set the LENGTH to the maximum of 4095 (2
12 − 1) Bytes beyond

the MTU (2304 Bytes), indicating the monitoring duration of 950

𝜇s (16 QAM) - 1.86 ms (QPSK) depending on the modulation. We

experimentally validated the 4095 Bytes LENGTH is successfully

received on commodity WNIC [2]. Also, it is non-disruptive to the

existing networks given that the WiFi supports long aggregated

packets of A-MPDU 65535 Bytes [64]. To capture a longer signal,

consecutive emulated headers can be leveraged. Given the average

channel access delay of 101.5 𝜇s [41] and the 950 𝜇s monitoring du-

ration per emulated header. This corresponds to monitoring 89.4%

of the time.
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5.4 Application III: Decoding
The spectrum monitoring identifies the wireless signal character-

istics including the technology, central frequency, duration, and

arrival time. Given such knowledge, we can further decode the

signals. We take ZigBee as an example to illustrate the decoding

mechanism.

0 π
𝜽 (Phase)

0.4

0.6

0.8

1

C
or
re
la
t io

n

5010 20 30 40
Sample

0

1

|Z
ig
B
ee
|

In-phase
Quadrature

0 π
𝜽 (Phase)

0.4

0.6

0.8

1

C
or
re
la
ti o

n

(a) Reference ZigBee signal

0 π
𝜽 (Phase)

0.4

0.6

0.8

1

C
or
re
la
t io

n

5010 20 30 40
Samples

0

1

|Z
ig
B
ee
|

In-phase
Quadrature

0 π
𝜽 (Phase)

0.4

0.6

0.8

1

C
or
re
la
ti o

n

(b) Correlation vs. 𝜃

Figure 15: Phase compensation
Decoding a phase modulated signal, such as ZigBee, requires

compensating the phase rotation. To achieve phase compensation,

we exploit a common signal feature inherent in arbitrary ZigBee

signals, regardless of the data they carry (which is unknown be-

fore decoding). Due to the +/- half-sine shaped ZigBee signal, the

absolute value (i.e., taking | · | for both in-phase and quadrature)

of an arbitrary ZigBee signal invariably becomes Figure 15(a). We

leverage this signal as a reference to phase compensation – We

first take the absolute value of the reconstructed signal followed

by phase rotation of 𝜃 , which is then correlated to the reference

signal in Figure 15(a) for different 𝜃 such that the correlation is

maximized. That is:

argmax

𝜃

Corr(𝑅(𝑡), |I{𝑥 (𝑡)𝑒 𝑗𝜃 }| + 𝑗 |Q{𝑥 (𝑡)𝑒 𝑗𝜃 }|), (3)

where 𝑅(𝑡) and 𝑥 (𝑡) are the reference and phase rotated signal,

respectively, and we increase 𝜃 by 𝜋/8 in our implementation. This

compensates the symbol phase rotation of −𝜃 . Figure 15(b) demon-

strates an example of the correlation with respect to 𝜃 where it

reaches the peak correlation of 0.93 at
3

4
𝜋 and 𝜋 + 3

4
𝜋 . This is be-

cause the absolute value of a signal and its 𝜋-shifted version is equal.

That is, |I{𝑥 (−𝑡)𝑒 𝑗𝜃 }| = |I{𝑥 (𝑡)𝑒 𝑗𝜃 }|, which holds for quadrature

as well.

Selecting between the two peaks leverages the direct sequence

spread spectrum (DSSS) in ZigBee. That is, DSSS predefines a set

of signal sequence, which is met strictly by only one of the two

candidates (i.e.,
3

4
𝜋 and 𝜋+ 3

4
𝜋 ). This compensates the symbol phase

rotation.
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Figure 16: (a) Ideal ZigBee (upper) vs. phase compensated (re-
constructed) ZigBee (lower) (b) Both yields the same bits of
two consecutive 1s for 𝑡0 → 𝑡1 and 𝑡1 → 𝑡2.

Figure 16(a) depicts phase compensated signal compared to the

ideal signal, followed by the decoded result in Figure 16(b). In

ZigBee, a clockwise or counter-clockwise phase shift indicates 1

or 0, where the phase compensated signal decodes to correct bits

(i.e., two consecutive ones). We also note that mapping to the DSSS

signal sequence simultaneously addresses the impact of CP and

boundary error, by essentially filling in the signal loss. Therefore,

the signal is fully decoded. We rigorously evaluate the ZigBee

decoding performance in Section 7.3.

6 DISCUSSION
This section discusses the equalization impact and WNIC settings

of SDR-Lite.
The Impact of Equalization Due to the channel between the Ini-

tiator and SDR-Lite, SDR-Litewill automatically equalize received

signal including ambient signal by using channel state information

(CSI). This affects the reconstructed signal from SDR-Lite. Never-
theless, in case of reconstructing narrowband signal (e.g., ZigBee),

the impact of equalization is minor. That is, for narrowband signal,

the channel is flat such that every frequency component of recon-

structed signal is consistently affected by flat channel. Thus, the

entire signal’s magnitude and phase are affected in a consistent

manner. This effect could be mitigated through our design in Sec-

tion 5.4 with phase correction. In case for the wideband signal, we

could unequalize the reconstructed signal by using CSI, which can

be obtained by sending general 802.11n packet to SDR-Lite using
tools, i.e., Atheros CSI tool [66].

WNIC Settings. OFDM emulation uses consecutive 53 subcarriers

out of 128 in 40 MHz 802.11n, while not containing null subcar-

riers. Our implementation uses subcarriers [-55, -3] under which

the center frequency of Initiator is 9 MHz apart from SDR-Lite.
This is compatible to the commodity WiFi, as typical WNICs allow

center frequency shifts in steps of 1 MHz at the driver level. Also,

to enable reception of the ambient signals which are naturally ran-

dom, SDR-Lite disables the CRC as allowed in many commodity

WNICS [3, 4, 14, 17]. Under these settings, SDR-Lite has potential

to be extended to other 802.11 variants with 40 MHz bandwidth

option (e.g., 802.11ac).

7 EVALUATION
In this section, we perform extensive experiments to evaluate

SDR-Lite under various circumstances. The experimental testbed

consists of an Initiator and SDR-Lite where the Initiator sends 40

MHz WiFi packets (including emulated header) to the 2.426 GHz

which is 1 MHz shifted from the WiFi channel 4, while SDR-Lite
receives the emulated header at 2.417 GHz (the WiFi channel 2). We

use a commodity WNIC Atheros AR9380 and USRP B210 as the Ini-

tiator, and D-Link DWA-192 and Alfa AWUS036ACM as SDR-Lite.
USRP B210 is used for detailed analysis.

7.1 Basic Performance of SDR-Lite
In this subsection, we evaluate basic performance of SDR-Lite in
terms of the shape of emulated header and packet reception rate

(PRR) performance with varying distances between the Initiator

and SDR-Lite. We use AR9380 (WNIC) as the Initiator and Alfa

AWUS036ACM (WNIC) as SDR-Lite, respectively.
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Emulated Header. Figure 17 illustrates the emulated header in

comparison to the ideal signal in the time domain. Despite em-

ulation imperfections (discussed in Section 4.4), emulated signal

closely mimics the ideal signal with the signal-to-noise ratio of

6.02 dB. This clearly demonstrates the practicality of the OFDM

emulation and its compatibility to the commodity WiFi receivers.
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Figure 18: PRR of emulated header.

SDR-Lite: Emulated Header PRR. In order to evaluate PRR, we

let the Initiator send a 40 MHz 802.11n packet which includes a

802.11g emulated header with 16 QAM and code rate 3/4 in the

payload with the transmit power (TX power) 18 dBm. In this evalu-

ation, we choose AR 9380 and USRP as the Initiator that transmits

the emulated header embedded in the 40 MHz 802.11n packet and

let SDR-Lite receive the emulated header which is 2 m apart from

the Initiator. Figure 18(a) shows that the PRRs achieved by the com-

mercial WNIC and USRP are 67% and 62%, respectively. We note

that the USRP’s PRR is lower than that of the WNIC since it does

not perform CSMA/CA. The PRR for normal (i.e., non-emulated)

WiFi packet is 97.79 %. We evaluate the retransmission scenario

for higher reliability. Figure 18(b) demonstrates SDR-Lite achieves

packet reception of above 99% with three retransmissions (i.e., total

of four transmissions).
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Emulated Header: Line-of-Sight. To validate the performance

of SDR-Lite under various scenarios, we consider both Line-of-

Sight (LoS) and Non-Line-of-Sight (NLoS) for PRR evaluation. First,

Figure 19(a) depicts the experimental setup of the LoS scenario. We

measure the PRR and RSSI as the distance between the Initiator

and SDR-Lite increases with the TX power 18 dBm. As shown in

Figure 19(b), at the closest distance of 1 m the PRR is 67% with -59

dBm, and it drops to 52% at 10 m with RSSI degraded to -72 dBm.

However, we note that by retransmitting emulated headers five

times, PRR reaches up to 95% at 10 m.
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Figure 20: PRR in the NLoS environment.

Emulated Header: Non-Line-of-Sight. The impact of NLoS en-

vironment is also evaluated. Figure 20(a) shows various SDR-Lite
positions (A)-(D) in the NLoS environment where the Initiator is

fixed on the desk which can be regarded as a WiFi AP. As shown in

Figure 20(b), the PRRs at (C) and (D) are 52% and 55%, respectively,

while in case of (A) and (B), the PRRs become 47%, 52%, respectively.

This is because the positions of (A) and (B) are further away from

the Initiator than the other positions. We note that by retransmit-

ting the emulated header five times, all users in the NLoS scenario

can achieve 95% of PRR.

Eval_1_5_zigbee_correlation

-10 -5 0 5 10
Power (dBm)

0.75

0.8

0.85

0.9

Eval_1_5_ble_correlation

Power (dBm)
0.75

0.8

0.85

0.9
C
or
re
la
tio

n

-10 -5 0 5 10

C
or
re
la
tio

n

(a) ZigBee correlation

Eval_1_5_zigbee_correlation

-10 -5 0 5 10
Power (dBm)

0.75

0.8

0.85

0.9

Eval_1_5_ble_correlation

Power (dBm)
0.75

0.8

0.85

0.9
C
or
re
la
tio

n

-10 -5 0 5 10

C
or
re
la
tio

n

(b) BLE correlation

Figure 21: Reconstructed and ideal signal correlation.

Signal Reconstruction. Now we demonstrate that non-WiFi sig-

nals (i.e., ZigBee and BLE) can be reconstructed by SDR-Lite. We

record emulated header signals (sent by AR 9380) and ZigBee sig-

nals (sent by CC2650) using a USRP, and then the concatenated

signals are transmitted by USRP to SDR-Lite for convenience. Fig-

ure 21 demonstrates the maximum correlation value 𝜃 between

the reconstructed ZigBee (or BLE) signal and the ideal ZigBee (or

BLE) signal, when the Tx power varies from -10 dBm to 10 dBm. As

shown in Figures 21(a) and 21(b), the maximum correlation value

can reach 0.86 and 0.85 for ZigBee and BLE, respectively, when

Signal to Noise Ratio (SNR) is sufficiently high. We note that the

achieved correlation indicates that the received signal (which is non-

WiFi) by SDR-Lite can be successfully reconstructed to recover the

original signal as illustrated below.
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Figure 22: Reconstructed ZigBee and BLE.

Figures 22(a) and 22(b) show the phase corrected signals of Zig-

Bee and BLE through the phase compensation with 𝜃 as described

in Section 5.4. As illustrated, the reconstructed signal (solid line)

and the ideal signal (dashed line) show high similarity, so that the

original payload can be decoded from the reconstructed signal (See

Section 7.3).

7.2 Spectrum Analysis
In this subsection, we demonstrate an application of SDR-Lite
as a spectrum analyzer. Using the Initiator as AR 9380 or USRP,

SDR-Lite (D-Link DWA-192) can monitor the RF spectrum in the

ISM band. As a ZigBee/BLE device, we use CC2650 [58] which is

multi-standard.

BLE

Figure 23: BLE captured by SDR-Lite.
How toMonitor Spectrum. To analyze the RF spectrum, we show

that for various RF activities SDR-Lite is capable of measuring

power of RF signals (thus plotting waterfall). Upon receiving the

emulated header sent by the Initiator, SDR-Lite starts to monitor

its RF spectrum at 2.417 GHz with 20 MHz bandwidth. Figure 23

shows that SDR-Lite captures BLE signal sent at 2.422 GHz where

X axis represents the time domain with a unit of a WiFi symbol

(4 𝜇s) and Y axis represents the frequency domain with a unit of a

subcarrier (0.3125 kHz).

ZigBee

BLE

ZigBee

BLE

ZigBee

BLE

Figure 24: Waterfall under varying power levels.

Spectrum Analysis: Emulated Header Power. The measured

RF power by SDR-Lite depends on emulated header’s power. To

evaluate the impact of the power of emulated header, we record

emulated header and ZigBee/BLE signals to USRP, and then send the

signals to SDR-Lite where the power ratio of the emulated header

to BLE/ZigBee varies from 16:1 to 1.6:1. Figure 24 demonstrates

the waterfall plots that capture the ZigBee and BLE signals at the

center frequency of 2.410 GHz and 2.422 GHz, respectively. As the

power of the emulated header decreases (from the left to the right),

the plot shows more detailed power levels of the ZigBee and BLE

signals. When an RF signal is received by SDR-Lite, it is required
to control the power of the emulated header close to the RF signal

so as to map the power of RF signal to the proper QAM point.

Figure 25: RC car and microwave oven.

Eval_2_3_RC_CAR

(a) Radio Controlled  Car (b) Microwave Oven

RC Car Microwave 
Oven

Figure 26: Proprietary and non-communications signals.

Spectrum Analysis: Other RF Signals. SDR-Lite is also able to

monitor non-wireless protocol signals. With the same experimen-

tal setup, we capture RF signals from the radio controlled (RC)

car and the microwave oven by SDR-Lite. Figures 26(a) and 26(b)

show the waterfall plots of the RF signals from the RC car and

microwave oven, respectively. It demonstrates that SDR-Lite can
monitor the RF spectrum so as to manage the network for better

spectral efficiency under the environment with various RF signals.

7.3 ZigBee Decoding
In this subsection, we validate the ability to decode ZigBee sig-

nals by SDR-Lite. We evaluate symbol error rate (SER) and packet

reception rate (PRR). For detailed analysis, we use USRP B210 to

record emulated header and ZigBee signal and SDR-Lite is used to

reconstruct and decode the ZigBee signal.

SER and PRR. For in-depth analysis and to rule out any irrelevant

factors, we transmit the recorded emulated header and ZigBee

signal using USRP, where various TX powers were tested.We set the

distance between the USRP and SDR-Lite to 2m. Figure 27(a) shows

the SER performance with varied TX powers of the USRP from -5

dBm to 10 dBm. We note that as described in Section 7.2 the power

of emulated header is required to be controlled considering the

power of the target signal, and thus we set the power ratio between

the emulated header and the ZigBee signal to 16:1. With 10 dBm TX

power, we achieve the SER performance up to 95%, while the SER
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Figure 27: ZigBee Decoding.

performance becomes 80% for the TX power of -5 dBm. Based on

the SER performance, Figure 27(b) presents the PRR performance

with different frame lengths for the TX power of 10 dBm. For a

frame with 4 bytes, the PRR performance is 64%, while the PRR

drops as the frame length gets longer. Three retransmissions offers

PRR of above 99%, enabling reliable ZigBee decoding. We note

that retransmissions are commonly used in ZigBee networks (e.g.,

to turn on duty-cycled receivers). This result demonstrates the

ZigBee decoding capability of SDR-Lite, essentially transforming

commodity WiFi device into a ZigBee decoder (e.g., mobile IoT

reader).

A B C A+B+C
0

0.02

0.04

0.06

0.08

SE
R

(A) (B)

(C)

2.
8 

m

6.7 m
(a) Multiple SDR-Lite Scenario (b) Symbol Error Rate

USRP

Figure 28: ZigBee Decoding with multiple SDR-Lite.

Reliable decoding with multiple SDR-Lites. We demonstrate

vastly improving ZigBee decoding performance with multiple SDR-

Lites, leveraging various WiFi devices in proximity. Specifically,

multiple SDR-Lite are triggered by broadcasting emulated header,

where they offer receiver diversity to significantly enhance the

SER. Figure 28(a) presents the evaluation scenario. Following the

previous experimental settings, we use USRP to send the emulated

header followed by ZigBee signal, under the same power. We ex-

plore the channel diversity among A, B, and C by decoding with

the majority voting (denoted as A+B+C in Figure 28(b)). By doing

so, Figure 28(b) shows a greatly improved SER of 0.56 %, compared

to the cases when the decoding is separately performed on each re-

ceiver (i.e., 7.75 %, 6.81 %, and 6.06 % for A, B, and C, respectively). To

summarize, leveraging multiple SDR-Lite enables highly reliable

ZigBee decoding.

7.4 RF Fingerprinting: Device Identification
Next, we demonstrate a device identification application using

RF signatures captured by SDR-Lite and its performance. Here,

we use the frame transient feature
1
[61]. The frame transient is

observed at the start and the end of each frame, which is determined

by the hardware manufacturing process and imperfections. This

feature can be unique even among devices with the same model.

1
The portion of the time-domain signal when the transmitted signal envelop changes

from one stable energy level to another stable energy level.

Figure 29: Device identification experiment.

Table 1: WiFi devices

Model Quantity Type

Honor View 10 (M1) 1 Smart device

iPad Pro (M2) 1 Smart device

iPhone 5s (M3) 1 Smart device

Moto G4 (M4) 1 Smart device

Moto G5 (M5) 1 Smart device

Xiaomi 8 (M6) 3 Smart device

TP-Link Archer A7 (A1) 1 Router

Netgear R7000 (A2) 1 Router

Raspberry Pi 0 (A3) 1 Router

Raspberry Pi 3 (A4) 1 Router

TP-Link WR841N (A5) 4 Router

As a result, such frame transient feature can be used to fingerprint

variousWiFi devices includingmobile phones andWiFi APs. Table 1

summarizes all WiFi devices used in our experiment. To compare

the performance of SDR-Lite and USRP in device fingerprinting,

we set up both SDR-Lite and USRP to capture the frame transient

features of WiFi signals from these devices (See Figure 29).
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Figure 30: Mobile phone fingerprinting.

Device Identification. The device identification includes train-

ing process and testing process. We use transient signals captured

by USRP and SDR-Lite as training sets, in which each transient

signal from USRP and SDR-Lite has a length of 200 and 64 data

points, respectively. Then, we capture another 200 samples from

each device as a testing set and use support vector machine (SVM)

algorithm to predict the device label of these transient signals. In

the mobile phone fingerprinting experiment, we aim to classify 6

smart devices of different models (denoted by M1-M6), as well as 3

Xiaomi 8 phones (M6
1
-M6

3
), where the result is shown in Figure 30.

In the router fingerprinting experiment, we classify 5 routers with

different models (A1-A5), as well as 4 TP-Link WR841N routers

(A5
1
-A5

4
). See Figure 31 for the result. The classification accuracy
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Figure 31: Router fingerprinting.

and identification accuracy denote the accuracy in classifying dif-

ferent models of devices and identifying individual devices with

the same model, respectively. The results show that the accuracy

increases with the growing number of training samples. SDR-Lite
achieves very similar device classification accuracy as USRP, given

sufficient training samples. However, for the identification in the

same model, SDR-Lite shows the lower accuracy compared to that

of USRP, while this degradation is caused by the inevitable signal

distortion during the reconstruction process. It is noteworthy that,

with 100 training frames, the accuracy of device identification for

both smartphones and routers remarkably exceeds 94%.
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Figure 32: ROC curves for rogue AP detection.

Rogue AP Detection. Moreover, frame transients can be used to

detect rogue APs. In this experiment, we let two TP-Link WR841N

routers as legitimate APs and capture 100 transient samples through

SDR-Lite as a training set for each device. Then, we choose another
TP-Link WR841N router and a Raspberry Pi Zero as two rogue

APs and use k-nearest-neighbor (kNN) algorithm to detect the

rogue APs. The receiver operating characteristic (ROC) curves are

presented in Figure 32, which shows that SDR-Lite achieves high

detection accuracy when the rogue AP’s model is different from

legitimate APs. Specifically, SDR-Lite can detect the Raspberry

Pi rogue AP with 99% true positive rate and less than 3% false

positive rate. However, when the rogue AP’s model is the same

as the legitimate AP (i.e., WR841N), the detection performance

degrades.

7.5 RF Fingerprinting: Drone Detection
Here we demonstrate another application of SDR-Lite as a drone
detector. In general, commercial drones and their controllers use

ISM band for message exchange (e.g., control, video streaming).

In this evaluation, we choose three representative drone models:

Intel Aero [31], DJI Mavic Pro [16], and 3DR Solo [1], where Intel

Aero and DJI Mavic Pro use their proprietary protocols, while 3DR

Intel Aero

DJI Mavic pro

3DR Solo

Flying drone

USRP

Figure 33: Drone detection experiment scenario.

Solo adopts the WiFi standard for communication. Different from

Section 7.4, in this application we introduce a DNN (Deep Neural

Network) to perform RF fingerprinting.

Experiment Setup. Figure 33 shows our drone experimental sce-

nario with the pictures of the three drones. In order to analyze

time series RF signals, we choose 1D CNN (Convolutional Neural

Network) [38] architecture. In this evaluation, we demonstrate two

tasks of (i) drone existence detection and (ii) drone model classifica-
tion. In the drone existence detection task, we scan the 2.4 GHz

spectrum so as to detect a drone based on its RF signal. Drone

model classification is to classify the model of drones by examining

drones’ RF signals. We use both USRP and SDR-Lite to scan the 2.4

GHz spectrum and capture the RF signal as an input of the DNN.

Our evaluation compares the accuracy performances when drone

signal is captured by USRP or SDR-Lite in the two tasks.
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Figure 34: Reconstructed drone’s signal by SDR-Lite.
Figure 34 demonstrates the reconstructed drone signals by SDR-Lite.

As illustrated, the distinct characteristics are maintained in the re-

constructed signals, since different drone models (e.g., Mavic Pro

and Solo) normally adopt different PHY standards or modulations.
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Figure 35: Drone detection accuracy.
Drone Existence Detection. To train a DNN, we collect 400 RF

signal samples from Intel Aero and 3DR Solo drones, and 400 noise

samples where each sample is composed of 64 In-phase and Quad-

rature points (as shown in Figure 34). The amplitude of every RF

and noise signal is normalized, so that different RF gains of each

signal does not impact the DNN outcomes. After training, we fur-

ther collect 300 test samples to evaluate the accuracy performance
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for drone existence detection. To validate generality and avoid over-

fitting, the 100 test samples are collected from another Intel Aero

drone which is different from the drone used for training sample

collection, and another 100 test samples are generated from a DJI

Mavic pro drone (not used in the training).

Figure 35 compares the accuracy of drone detection when the

RF signal is captured by USRP and SDR-Lite (the shaded areas

in grey represent standard deviation with 5 random seeds). With

the increasing number of training iteration, the accuracy of USRP

quickly converges to the performance of 98.2%. SDR-Lite achieves

the similar performance (98%) compared to that of USRP while

SDR-Lite requires more steps until convergence. This experiment

demonstrates that SDR-Lite is able to detect drones’ signal in the

face of device heterogeneities.
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Figure 36: Model classification evaluation.

Drone Model Classification. In this experiment, we classify the

model of the three drones by analyzing their RF signals through

the DNN. Similar to the drone existence detection experiment, we

collect 450 samples for training and 200 samples for test from each

drone, respectively.

Figure 36(b) demonstrates the confusion matrix of the drone

classification using the reconstructed signal by SDR-Lite where Y

axis is the true drone model while X axis is the predicted model

by the DNN. It is worth noting that the Solo drone can be clas-

sified without any error since it only uses WiFi signal which is

significantly different from the other RF signals (as shown earlier).

Figure 36(a) shows the performance evaluation of SDR-Lite and
USRP as the number of iteration steps increases. While the USRP

performance achieves the accuracy of 99.3%, SDR-Lite is able to

classify the drone models with the accuracy of 93.7%. In compar-

ison to the WiFi signal of Solo drone, it is more challenging to

distinguish the RF signals of Aero and Mavic Pro drones, which

bear more similarity especially when the signal is reconstructed by

SDR-Lite. Even though the classification performance achieved by

SDR-Lite is 93.7%, this classification is conducted by giving a 4 𝜇s

sample to the DNN; thus, we can further improve the accuracy by

collecting multiple samples.

8 RELATEDWORK
SDR Applications. There exist a number of commercially avail-

able SDR platforms [42, 53, 54], which require dedicated hardware.

Recent development includes GalioT [43], Tick [65], IoT SDR [10],

TinySDR [28], and Shadow WiFi [55]. Although relatively low-

cost, TinySDR also requires a specially designed hardware, which

only supports limited bandwidth up to 2 MHz. Shadow WiFi [55]

enabled SDR transmitter functionalities on commodity WiFi, as

opposed to SDR receiver functionalities offered in SDR-Lite. SDR
has been used to collect RF signatures for device fingerprinting

[7, 26, 36, 52, 61]. Interestingly, recent research uses SDR to detect

drones by their RF signatures [48–50]. To summarize, SDR-Lite
utilizes widely-accessible commodity WiFi to enable SDR receiver

applications.

Cross-TechnologyCommunication (CTC).Alongwith a pletho-
ra of heterogeneous wireless devices, cross-technology communica-

tion (CTC) has been spotlighted as a key technique to manage the

network with high heterogeneity [8, 9, 18–20, 23–25, 29, 30, 33, 34,

37, 39, 40, 62, 69–72, 74, 75]. Among these studies, WEBee [39] pro-

poses a signal emulation technique that transforms WiFi’s OFDM

signal into ZigBee signal. Inspired by it, SDR-Lite introduces the
first OFDM emulation technique (i.e., WiFi’s 40 MHz OFDM →
WiFi’s 20 MHz OFDM). More significantly, our signal emulation

is not only be confined to CTC, but also can provide the SDR-like

functionality using commodity WiFi devices.

Applications Using WiFi Channel State Information (CSI).
CSI measures the channel between the transmitter and receiver

pairs for equalization in coherent receivers, such as WiFi. Since

the work on extracting CSI from commodity WiFi NICs [27, 66]

as announced, there has been a body of recent studies exploring

CSI to enable diverse application across various domain. This in-

cludes device or user identification [11, 12, 63, 73, 76] and localiza-

tion [21, 35, 56, 67, 68]. Compared to CSI, SDR-Lite delivers orders
of magnitude higher sampling rate. Specifically, a single CSI is ob-

tained per packet (∼325 Ksps), while SDR-Lite yields 17 Msps. This

rich information enables SDR-Lite to support wide range of SDR

receiver applications, well beyond of what CSI can offer. This in-

cludes (ZigBee) decoding and spectrum analysis an experimentally

demonstrated in this paper.

9 CONCLUSION
We proposed SDR-Lite, a novel zero-cost and software-only SDR

receiver built on commodity WiFi devices. For a WiFi device to

capture ambient wireless signals, we design the new OFDM emula-

tion technique which generates an emulated WiFi header within

a WiFi packet payload. Upon receiving the emulated header, the

WiFi receiver decodes the ambient signal in the air and outputs

corresponding bit sequence. SDR-Lite reconstructs the I/Q of the

ambient signal from the output bits, imitating a SDR receiver. The

efficacy of SDR-Lite was demonstrated with seven SDR receiver

applications under three categories including RF fingerprinting,

spectrum monitoring, and ZigBee decoding.
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