SigPID: Significant Permission Identification for Android Malware Detection

Lichao Sun, Zhigiang Li, Qiben Yan, Witawas Srisa-an and Yu Pan
University of Nebraska—Lincoln
Lincoln, NE 68588
{Isun,zli,qyan,witty,ypan} @cse.unl.edu

Abstract

A recent report indicates that a newly developed mali-
cious app for Android is introduced every 11 seconds. To
combat this alarming rate of malware creation, we need a
scalable malware detection approach that is effective and
efficient. In this paper, we introduce SIGPID, a malware
detection system based on permission analysis to cope with
the rapid increase in the number of Android malware. In-
stead of analyzing all 135 Android permissions, our ap-
proach applies 3-level pruning by mining the permission
data to identify only significant permissions that can be ef-
fective in distinguishing benign and malicious apps. SI1G-
PID then utilizes classification algorithms to classify differ-
ent families of malware and benign apps. Our evaluation
finds that only 22 out of 135 permissions are significant. We
then compare the performance of our approach, using only
22 permissions, against a baseline approach that analyzes
all permissions. The results indicate that when Support Vec-
tor Machine (SVM) is used as the classifier, we can achieve
over 90% of precision, recall, accuracy, and F-measure,
which are about the same as those produced by the base-
line approach while incurring the analysis times that are 4
to 32 times smaller that those of using all 135 permissions.
When we compare the detection effectiveness of SIGPID to
those of other approaches, SIGPID can detect 93.62% of
malware in the data set, and 91.4% unknown malware.

1 Introduction

Android is currently the most used smart-mobile de-
vice platform in the world, occupying 82.8% of market
share [10]. As of now, there are nearly 2 million apps avail-
able for downloading from Google Play, and more than 50
billion downloads to date. Unfortunately, the popularity
of Android also creates interests from cyber-criminals who
create malicious apps that can steal sensitive information
and compromise systems. Unlike other competing smart-
mobile device platforms, such as iOS, Android allows users

to install applications from unverified sources such as third
party stores. This problem has been so serious that a recent
report indicates that 97% of all mobile malware target An-
droid devices [11]. In 2015 alone, over 2.33 million new
malicious apps have been uncovered. This roughly trans-
lates to an introduction of a new malicious Android app ev-
ery 11 seconds [3]. These malicious apps are created to
perform different types of attacks in the form of trojans,
worms, exploits, and viruses. Some types of malicious apps
have more than 50 variants, which makes it extremely chal-
lenging to detect them all [13].

To address these elevating security concerns, researchers
and analysts have used various approaches to develop mal-
ware detection tools [4—6]. For example, RISKRANKER [6]
uses static analysis to discover malicious behaviors in An-
droid apps. However, static analysis approaches in gen-
eral can produce a large number of false positives. To in-
crease the analysis precision, researchers have also used
dynamic analysis to capture execution context. For exam-
ple, TAINTDROID [4] dynamically tracks multiple sensi-
tive data source simultaneously. However, dynamic anal-
ysis approaches, in general, need adequate input suites to
sufficiently exercise execution paths. Furthermore, Petra et
al. [12] show that a broad range of anti-analysis techniques
can be employed by malware to successfully evade dynamic
analysis.

Recently, more efforts have been spent on analyzing per-
mission in the Android system. Researchers have used ma-
chine learning and data mining techniques to detect An-
droid malware based on permission usage. For example,
DREBIN [2] combines static analysis and machine learn-
ing techniques to detect Android malware. The experimen-
tal result shows that DREBIN can achieve high detection
accuracy by using as many features as possible to aid de-
tection. However, using more features also increases the
overhead of their system. Considering the large amount of
malicious apps, we need a detection system that can oper-
ate efficiently to identify these apps. Google also identifies
24 permissions out of the total of 135 permissions as “dan-
gerous”. The list of dangerous permissions can be used as a

guideline to help identify malicious applications. As will be
shown in this paper, using just this list to identify malware
still yields suboptimal detection effectiveness.

In this paper, we present SIGPID, an approach that ex-
tracts significant permissions from apps, and uses the ex-
tracted information to effectively detect malware using su-
pervised learning algorithms. The design objective of SIG-
PID is to detect malware efficiently and accurately. As
stated earlier, the number of newly introduced malware is
growing at an alarming rate. As such, being able to detect
malware efficiently would allow analysts to be more pro-
ductive in identifying and analyzing them. Our approach
analyzes permissions and then identifies only the ones that
are significant in distinguishing between malicious and be-
nign apps. Specifically, we propose a multi-level data prun-
ing approach including permission ranking with negative
rate, permission mining with association rules and support
based permission ranking to extract significant permissions
strategically. Then, classification algorithms are used to
classify different types of malware and benign apps.

The results of our empirical evaluation show that SIG-
PID can cut down the number of permissions that we need
to analyze to just 22 out of 135 (84% reduction), while
maintaining over 90% malware detection accuracy and F-
measure when Support Vector Machine (SVM) is used as
the classifier. We also find that the number of signifi-
cant permissions identified by our approach (22) is lower
than the number of “dangerous” permissions identified by
Google (24). Moreover, only 8 permissions jointly appear
on our list and their list. This is because our approach dy-
namically determines significant permission based on actual
usage by the applications instead of statically defining dan-
gerous permission based on their intended services. This
difference allows our approach to detect more malware than
the approach that uses the dangerous list alone. We also
compare the accuracy and running-time performance of our
approach against DREBIN [2], PERMISSION-INDUCED
RISK MALWARE DETECTION [14], and existing virus scan-
ners. Again, we find that our approach can detect more mal-
ware than the other approaches with low overhead.

In summary, our paper makes the following contribu-
tions:

1. We develop SIGPID, an approach that identifies a sub-
set of permissions (significant permissions) that can
be used to effectively identify malware. By using our
technique, the number of permissions that needs to be
analyzed is reduced by 84%.

2. We evaluate the effectiveness of our approach using
only a fifth of the total number of permissions in An-
droid. We find that SigPID can achieve over 90% in
precision, recall, accuracy, and F-measure. These re-
sults compare favorably with those achieved by an ap-

proach that uses all 135 permissions as well as just the
dangerous permission list. We also evaluate generality
of SIGPID by employing 67 other machine learning
algorithms. When we evaluate the malware detection
effectiveness of SIGPID, we find that our approach is
more effective by detecting 93.62% of malicious apps
in the data set and 91.4% unknown malware.

The rest of this paper is organized as follows. Section 2
provides the implementation details of the proposed SIG-
PID. Section 3 reports the results of our empirical evalua-
tions. Section 4 compares our work to other related work.
The last section concludes this paper.

=
ek

©)

|Support Vector Machines|

)
] |
= e permission matrix '
benign apps .| (anapp cons(r‘ucls a vector) |

& i HOM! |

= ® =5 |\ DecisionTree /| — ‘
Training & Testin 8l N
Multi-Level Data Pruning g‘ ‘] |

®
malicous apps 1lO)
I- B Results

| Malware Detection Resuits
Malware Detection System

new permission matrix
(less features after pruning)
Building Detection System

Data Pre-Processing

Figure 1. Architectural Overview of SigPID

2 Introducing SigPID

The goal of Significant Permission IDentification (SIG-
PID) system is to achieve high malware detection accuracy
and efficiency while analyzing the smallest number of per-
missions. To do so, our system prunes permissions that
have low impacts on detection effectiveness using multi-
level data pruning to reduce analysis efforts. Our system
consists of three major components: (i) permission rank-
ing with negative rate; (ii) support based permission rank-
ing; and (iii) permission mining with association rules. Af-
ter pruning, SIGPID employs supervised machine learning
classification methods to identify potential Android mal-
ware. Finally, SIGPID reports malware detection summary
to the analysts. The complete system architecture of SigPID
is shown in Figure 1. We then describe the key components
in the remainder of this section.

2.1 Multi-Level Data Pruning (MLDP)

A first component of SIGPID is the multi-level data
pruning process to identify only significant permissions in-
stead of considering all 135 permissions available in An-
droid. Most apps do not request all 135 permissions. The

ones that an app requests are listed in the APK as part of
manifest.xml. When we need to analyze a large number of
apps (e.g., several hundred thousand), the total number of
permissions requested by all apps can be overwhelmingly
large, resulting in long analysis time. This high analysis
overhead can negatively affect the malware detection effi-
ciency as it reduces analyst productivity.

We use three levels of data pruning methods to filter out
permissions that contribute little to the malware detection
effectiveness. Thus, they can be safely removed without
negatively affecting malware detection accuracy. The com-
plete procedure is illustrated in Figure 2. We then describe
each level in the pruning process.

2.1.1 Permission Ranking with Negative Rate (PRNR)

Each permission describes a particular operation that an app
is allowed to perform. For instance, permission INTERNET
indicates whether the app has access to the Internet. Differ-
ent types of benign apps and malicious apps may request
a variety of permissions corresponding to their operational
needs. For malicious apps, we hypothesize that their needs
may have common subsets [2] [14], and we do not need to
analyze all 135 permissions to build an effective malware
detection system.

As such, our focus is more on the permissions that cre-
ate high risk attack surfaces and are frequently requested by
malware samples. Our pruning also includes permissions
that are rarely requested by the malware so that we can use
this information to differentiate between malicious and be-
nign apps. At the same time, we also exclude permissions
that are commonly used by both benign and malicious apps,
as they introduce ambiguity in the malware detection pro-
cess. For instance, permission INTERNET are frequently
requested by both malware and benign apps, as almost all
apps will request to access the Internet. Therefore, our ap-
proach prunes permission INTERNET.

As the next step, we rank permissions based on how they
are used by malicious and benign apps. Ranking is not a
new concept. Prior work have also used generic permis-
sion ranking strategy such as mutual information to identify
high risk permissions [14]. However, their approaches tend
to only focus on high risk permissions, and ignore no-risk
permissions, which are significant permissions in our ap-
proach.

Our approach, referred to as Permission Ranking with
Negative Rate or PRNR, provides a concise ranking and
comprehensible results. The approach operates on two ma-
trices, M and B. M represents a list of permissions used
by malware samples and B represents a list of permissions
used by benign apps. M;; represents whether the jth per-
mission is requested by the i*” malware sample, while ‘1’
indicates yes, ‘0’ indicates no. B;; represents whether the

4" permission is requested by the i*” benign app sample.

Note that the size of B can be much larger than the size
of M. With our ranking scheme, we prefer the data set
on the two matrices to be balanced. Training over imbal-
anced dataset can lead to skewed models [8]. To balance the
two matrices, we use Equation 1 to calculate the support of
each permission in the larger dataset and then proportion-
ally scales down the corresponding support to match that of
the smaller dataset. In case that the number of rows of B is
bigger than that of M, we have:

> Bij

Sp(P;) = ———=— * size(M, 1

B(P;) size(B)) * size(M;), e
where P; denotes the j* permission, and Sp(P;) repre-
sents the support of j*" permission in matrix B. PRNR can

then be implemented using Equation 2:
> Mi; — Sp(F;)

R(F;) = EM” + Sp(P;)

2

The PRNR algorithm is used to perform ranking of our
datasets. In the formula above, R(P;) represents the rate
of j'" permission. The result of R(P;) has a value ranging
between [-1, 1]. If R(P;) = 1, this means that permission
P; is only used in malicious dataset, which is a high risk
permission. If R(P;) = -1, this means that permission P; is
only used in benign dataset which is a low risk permission.
If R(P;) = 0, this means that P; has very little impact on
malware detection effectiveness. Since both -1 and 1 are
important, we simply take the absolute value of each num-
ber and the result of | R(P;)| ranges between [0, 1].

Next, we design a Permission Incremental System (PIS)
to include permissions based on the order in the two lists.
For example, we choose the top permission in the benign
list and the top permission in the malicious list as our input
features to build malware detection. We then evaluate mal-
ware detection by using the following metrics: precision,
recall(true positive rate), false positive rate, accuracy, and
F-measure. Next, we choose the top three permissions in
both lists to build malware detection. Then, we repeat the
process again while increasing the number of top permis-
sions to use for malware detection until the detection met-
rics plateau. The main goal is to find the smallest number
of permissions that yields a very similar malware detection
effectiveness as that of using the entire data set. After ap-
plying PRNR, we find that using 95 permissions performs
nearly as well as using the whole 135 permissions. Results
of our evaluation is provided in Section 3.

2.1.2 Support Based Permission Ranking (SPR)

To further reduce the number of permissions, we turn our
focus to the support of each permission. Typically, if

: 1) 2) :
{ Permission Ranking with Negative Rate J% { Support Based Permission Ranking J% { Permission Mining with Association Rules J

Figure 2. Multi-Level Data Pruning

the support of a permission is too low, it does not have
much impact on malware detection. For instance, we
find the permission BIND_TEXT_SERVICE only in be-
nign apps. As such, we may think that any app that uses
BIND_TEXT_SERVICE is benign. However, this permis-
sions is used only by one app out of over 310,926 benign
apps. As such, only relying on the rate provided by PRNR
is inaccurate. We also need to prune out permissions with
low support.

To do so, we use PIS to find the least number of permis-
sions with high support while yielding good accuracy. After
applying SPR, we are able to reduce the number of signifi-
cant permissions to just 25 or 19% of the total permissions.
Again, the results of our evaluation is provided in Section 3.

2.1.3 Permission Mining with Association Rules
(PMAR)

After pruning 110 of 135 permissions by using PRNR and
SPR with PIS, we want to further explore approaches that
can reduce non-influential permissions even more. By in-
specting the reduced permission list that contains 25 signif-
icant permissions, we find three pairs of permissions that
always appear together in an app. For example, permission
WRITE_SMS and permission READ_SMS are always used
together. They both also belong to the “dangerous” permis-
sion list provided by Google. As such, we can associate
one, which has a higher support, to its partner. In this ex-
ample, we can remove permission WRITE_SMS. In order
to find permissions that occur together, we apply permis-
sion mining with association rules (PMAR) [1]. In all, we
are able to remove three additional permissions, giving us
22 permissions that we consider as significant.

3 Evaluation

In this section, we evaluate the malware detection ef-
fectiveness of the SIGPID system. We first use SVM and
a small dataset to test our proposed MLDP model. SVM
determines a hyperplane that separates both classes with a
maximal margin based on the training dataset that includes
benign and malicious application. In this case, one class is
associated with malware, and the other class is associated
with benign apps. Then, we assume the testing data as un-
known apps, which are classified by mapping the data to
the vector space to decide whether it is on the malicious or

benign side of the hyperplane. Then, we can compare all
analysis results with their original records to evaluate the
malware detection correctness of the proposed model by us-
ing SVM.

Through pruning, our system, as previously mentioned,
identifies only 22 significant permissions (a reduction of
84%). On the other hand, Google lists 24 Android per-
missions as dangerous. We also use these 24 permissions
to build a malware detection system as part of our empiri-
cal evaluation (referred to as Android). As mentioned ear-
lier, MLDP consists of three main components: permission
ranking with negative rate, support based permission rank-
ing, and permission mining with association rules. We eval-
uate the malware detection performance by enabling these
multiple levels sequentially to verify the performance im-
provement contribute by each level of permission mining
procedure. In addition, we also evaluate the runtime ef-
ficiency of multi-level data pruning. Mainly, SVM algo-
rithm is employed to perform malware detection. However,
we also illustrate generality of SIGPID by employing 67
other commonly used machine learning algorithms. We
then identify the five best performing algorithms and em-
ploy them to help detect malware in our second collection
of apps. Finally, we compare the classification effectiveness
of SigPID with results of approaches using other permission
ranking methods such as Mutual Information [14] as well as
signature based malware detection commonly employed by
commercial virus scanners.

3.1 Data Set

We generate ten datasets by randomly choosing 5,494
benign apps from 310,926 benign apps, downloaded from
Google play store in June 2013 [2], to carry out cross-
validation. The malicious apps are classified into 178 fam-
ilies, and the benign apps are grouped into a single family.
We select the number of benign apps to be the same as mali-
cious apps to maintain balance during training. Imbalanced
dataset can result in skewed models [8]. We also create
another collection containing 1,661 malware samples [14]
with no overlap with the initial sets. This new collection
is used to evaluate the effectiveness of our system to detect
newer unknown malware.

Then, the requested permission list is built by extracting
permission requests from each app listed in AndroidMan-
ifest file. The permission information is translated into a

Table 1. Rankings by PRNR and Mutual Information

MLDP Mutual Information
22 Permissions Top 22 Permissions
ACCESS_WIFI_STATE READ_LOGS READ_SMS WRITE_CALL_LOG
CAMERA READ_PHONE_STATE WRITE_SMS VIBRATE
CHANGE_NETWORK_STATE READ_SMS SEND_SMS CHANGE_NETWORK_STATE

CHANGE_WIFI_STATE RECEIVE_BOOT_COMPLETED

WRITE_APN_SETTINGS

DEVICE_POWER

DISABLE_KEYGUARD RESTART_PACKAGES

RECEIVE_SMS

WRITE_SETTINGS

GET_TASKS SEND_SMS

INSTALL_PACKAGES

ADD_SYSTEM_SERVICE

INSTALL_PACKAGES SET_WALLPAPER

READ_PHONE_STATE

ACCESS_NETWORK_STATE

READ_CALL_LOG SYSTEM_ALERT_WINDOW

READ_EXTERNAL_STORAGE

ACCESS_LOCATION_EXTRA_COMMANDS

READ_CONTACTS WRITE_APN_SETTINGS

RESTART_PACKAGES

WAKE_LOCK

READ_EXTERNAL_STORAGE WRITE_CONTACTS

RECEIVE_BOOT_-COMPLETED

ACCESS_COARSE_LOCATION

READ_HISTORY_BOOKMARKS WRITE_SETTINGS

WRITE_CONTACTS

GET_ACCOUNTS

binary format dataset where ‘1’ indicates that the app re-
quests the permission, and ‘0’ indicates the opposite. The
permission lists extracted from malicious apps and benign
apps are combined to form a holistic dataset for data analy-
sis.

3.2 Evaluating Effectiveness of MLDP

We report the effectiveness of each component of multi-
level data pruning as well as the effectiveness of the ap-
proach of simply using dangerous permissions provided by
Google. We report the results in Table 2. As shown, the
simple approach of using dangerous permission to detect
malware (last row) yields about the same recall rate or True
Positive Rate (TPR) as that of PRNR using 95 permissions
(column 4). When we reduce the numbers of permissions to
25 and 22, using SPR and PMAR, respectively, we achieve
higher recall rates of over 91%. However, this higher mal-
ware detection effectiveness comes at a cost of higher Fault
Positive Rate (FPR) of over 8.5% (column 5).

Table 2. Detection Results using SVM with
Multi-Level Data Pruning and Android Dan-
gerous Permissions

of Approach Precision | Recall |FPR| FM | ACC
Permissions (%) (TPR, %) | (%) | (%) | (%)
95 PRNR 96.39 85.78 [3.22]90.77]91.28
25 PRNR+SPR 90.64 91.77 [9.56|91.17|91.10
22 PRNR+SPR+PMAR | 91.55 91.22 [8.54|91.34]/91.34
[135 All Permissions | 98.81 | 83.73 [1.01]90.65[91.36|
[24 | Dangerous Permissions | 98.64 | 85.12 [1.12[91.38[91.97|

Discussion. To further explain the process to determine
the number of significant permissions after each pruning
technique is applied, we present Fig. 3, which shows the
key performance metrics of using PRNR with PIS as we
gradually vary the number of permissions. We also present
Fig. 4, which shows the standard deviation of key perfor-
mance metrics of using SPR.

According to Fig. 3 and Fig. 4, with an increasing num-
ber of permissions, the classification accuracy, recall and

F-measure are improving every round. Meanwhile, the pre-
cision slightly degrades every round, but always stays above
90%. One keen observation is that the recalls, accuracies
and F-measures plateau after the number of permissions
reaches 90 in Fig. 3, and the permissions reaches 10 in
Fig. 4. Maximum recall is achieved when we use 25 per-
missions.

Next, we implement permission mining with association
rules to perform the last layer of permission mining. Here,
we find 3 rules satisfying our associative requirements when
we set our confidence level to 96.5%. The association rules
mining shows that permission WRITE_SMS and permis-
sion READ_SMS have a 98.4034% chance to appear to-
gether. Meanwhile, permission WRITE_SMS is very fre-
quently used in both malware and benign applications while
READ_SMS is used mainly by malware. When we remove
the permission WRITE_SMS, only applications requesting
permission READ_SMS are classified as malware. After
pruning 3 more permission features in the dataset, we only
retain 22 features. We then observe that higher precision is
achieved with the new model employing 22 instead of 25
permissions.

We then compare the list of significant permissions gen-
erated by our approach to the top 22 permissions identified
by another permission ranking method called Mutual Infor-
mation [14]. It uses 40 permissions and achieves 86.4%
TPR and 1.4% FPR. We list these permissions in Table 1.

We conclude that different permission ranking methods
induce different ranking lists. For example, using PRNR,
we drop the permission INTERNET since it shows that both
benign and malicious apps often need INTERNET. How-
ever, mutual information based ranking method keeps the
permission INTERNET in the list as permission INTER-
NET is frequently requested by all apps. When we compare
our list of 22 significant permissions to the list of 24 danger-
ous permissions identified by Google, we notice that there
are only 8 permissions that appear on both lists. Therefore,
we believe our algorithm can retain more significant permis-
sions by pruning less important or meaningless permissions
compared with other permission ranking methods. This al-
lows our approach to identify more malicious app (higher

Percentage

0 20 40 60 80 100 120

The Number of Permissions

©Precision O Recall FM < AC

Figure 3. Malware Classification Performance
of Permission Incremental System with PRNR

recall rate), which is an important property of an effective
malware detector.

3.3 Evaluating Generality of MLDP

In order to show the generality of MLDP, we experi-
ment with using different malware detection models based
on 67 machine learning algorithms in Weka [7]. We ex-
periment with both the original dataset and the dataset after
data pruning using MLDP. We want to evaluate the perfor-
mance of MLDP in any general algorithm in terms of detec-
tion accuracy and running time performance. Table 3 report
the best machine learning algorithms for our proposed ap-
proach (Functional Tree or FT in this case) and the approach
of using 24 Android dangerous permissions (Random For-
est). We select the algorithm that yields the highest recall
for each of these two approaches. As shown, even with the
most optimal algorithms, our approach still yields 3.27%
higher recall rate than using the dangerous permission list.
However, the false positive rate is also 1.09% higher.

Table 3. Optimal ML Algorithms For SigPID
and Android Dangerous Permissions

Num_of_Feature Best ML Precision | Recall(TPR) | FPR M ACC

SigPID (22) FT 97.54% 93.62% |2.36% | 95.54% | 95.63%

Android (24) | RandomForest | 98.61% 90.35% 1.27% | 94.30% | 94.54%

In Table 4, we have the average processing times of the
five top performing machine learning algorithms, based on
recall rates of using 22, 40 [14], and 135 permissions, re-
spectively. As shown, FT is the most efficient machine
learning algorithm. When FT is used with the 22 signifi-
cant permissions, the processing time is only 0.7 seconds
on average, compared to 24.55 seconds from the malware
detection model using 135 permissions.

95.00%

85.00%

75.00%

Percentage

65.00%

0 10 20 30 40 50 60
The Number of Permissions

OPrecision ORecall AFM X AC

Figure 4. Malware Classification Performance
of Permission Incremental System with SPR

Table 4. Training and Testing Time with Dif-
ferent Numbers of Permissions

Num_of_Feature 22 40 135

Algorithm Time(Seconds) | Time |More Time| Time |More Time

RandomCommittee 1.376 2.078 | 51.02% 7.995 | 481.03%

RotationForest 47.303 71.887| 51.97% |236.944| 400.91%
FT 0.731 2.14 | 192.75% | 24.55 | 3258.41%

PART 16.673 24.645| 47.81% | 104.74 | 528.20%

RandomForest 14.028 20.045| 42.89% | 59.991 | 327.65%

SVM 2.4722 27604 | 11.66% | 3.6773 | 48.75%

RandomF orest
PR |

FT

RotationForest

RandomCommittee

Android ®MLDP_22

Figure 5. Detection Performance using Un-
known Real-World Malware

We then apply our approach and malware detection
based on the list of dangerous permissions to detect a dif-
ferent collection of apps containing 1,661 real-world mal-
ware. Again, we apply the top five machine learning algo-
rithms for this evaluation. We report the result in Figure 5,
which shows that our approach consistently detects 4% to
5.5% more malware than the approach that uses 24 danger-
ous permissions.

Discussion. The proposed malware detection approach in-
curs anywhere from 4 times (when rotation forest is used) to
32 times (when functional tree is used) less processing times
than those incur by an approach that analyzes the complete

Table 5. Detection Rates of SIGPID and Anti-Virus Scanners

SigPID w/|SigPID w/ Mutual Drebin | AV1 AV2 AV3 AV4 AVS5 AV6 AV7 AVS8 | AV9 | AVIO
FT SVM |Information [14] [2]
93.62% | 91.22% 86.4% 93.90%|96.41% [93.71% | 84.66% | 84.54% | 78.38% |64.16% | 48.50% | 48.34% |9.84% | 3.99%

permission list. Additionally, smaller feature set can also
reduce memory consumption.

Based on the tested 67 machine learning algorithms, we
also find that the machine learning methods based on tree
structure can produce better results. Among the top 10 ef-
ficient algorithms, 5 are designed with tree structures. The
tree structure based method usually takes a large amount
of space and time to run the classification process, so our
MLDP can serve as a solution to help significantly improve
running time efficiency of the malware detection model
based on tree structures.

When we use our approach and the approach that uses
24 dangerous permissions to detect a new collection of mal-
ware, we see a similar pattern, in which our system consis-
tently produces higher recall rates. While this experiment is
still somewhat limited, it does provide some evidence that
the approach can be used to effectively detect malware be-
yond the initial data set that we used for training and testing.

3.4 Comparison with Other Approaches

In this section, we compare our detection results with
other malware detection approaches, listed as follows:

DREBIN [2] is an approach that uses static analysis to
build data set based on permissions and other features from
apps. It then utilizes Support Vector Machine (SVM) algo-
rithm to classify malware dataset. We did not reimplement
their approach since it requires significant program analysis
in addition to permission analysis. Instead, we compare our
results with their reported results.

PERMISSION-INDUCED RISK MALWARE DETECTION
[14] is an approach that applies permission ranking, such
as mutual information. They use the permission ranking
and choose the top 40 risky permissions for malware de-
tection. We reimplemented their approach for comparison.
Note that in their paper, they used a different data set and the
ratio of their malicious and benign apps in their dataset is
dominated by benign apps. As such, their reported results,
especially false positive rate, are significantly different than
the results achieved using our data set.

The comparison results are shown in Table 5. DREBIN
uses more features than our SIGPID, including API calls
and network addresses. As a result, DREBIN outperforms
PERMISSIONCLASSIFIER in detection accuracy. We also
compare the results against 10 existing anti-virus scan-
ners [2]. When we combine SIGPID with FT, we can
achieve the highest detection rate (93.62%) using only 22

permissions.

Discussion. When we compare the result of our work
to other approaches that only consider risky permissions,
SIGPID considers a broader criteria that also include non-
risky permissions (e.g., READ_CALL_LOG), which are
only used in benign apps and have high support values. We
call the risky and non-risky permissions with high support
values as significant permissions, allowing SIGPID to be
more effective in distinguishing between malicious and be-
nign apps than other existing approaches.

We also notice that the permission lists used by DREBIN
contain many meaningless features. It is possible that per-
formance improvements can be achieved by integrating Sig-
PID with FT into DREBIN to improve both malware detec-
tion accuracy and running time performance. We will ex-
plore this integration in our future work.

We also see that, despite a small number of permissions,
our approach outperforms most of existing malware scanner
available today. This is because most of these techniques
rely on signature matching; so if a type of malware signa-
tures is not available, the system would not be able to de-
tect that particular type. We also show that our approach
is more effective than DREBIN when we combine our per-
mission pruning with FT. DREBIN is a more complex mal-
ware detection approach that also uses static program anal-
ysis. We plan to also explore a combination of using static
program analysis with SIGPID to assess whether we can
achieve higher detection effectiveness.

4 Related Work

Previous research efforts have used Android permissions
to detect malware. Huang et al. [9] explored the possi-
bilities of detecting malicious applications based on per-
missions using machine learning. They retrieved not only
all the permissions, but also several easy-to-retrieve fea-
tures from each APK to help detect malware. Four common
machine-learning algorithms, AdaBoost, Naive Bayes, De-
cision Tree and SVM, are employed in their system to eval-
uate the performance. Experimental results show that more
than 80% of the malicious samples can be detected by the
system. Because the precision is not high, their system can
only be used as a first level filter to help detect malware. A
second pass of analysis is still needed for their system. Our
proposed approach can achieve a much higher detection rate
compared to this work.

DREBIN [2] combines static analysis of permissions
and APIs with machine learning to detect malware. They
embedded features in a vector space, discovered patterns of
malware from the vector space, and used these patterns to
build the machine learning detection system. Their evalua-
tion results indicate that their proposed work can achieve
high detection accuracy. However, their analysis is per-
formed on the devices, and therefore requires that those de-
vices be rooted. They extracted as many features as possible
to help improve performance. However, our work only em-
ploys the significant permission features, which reduces the
overhead of computation while retaining a satisfying result.

Wang et al. [14] explored the permission-induced risk
in Android apps using data mining. They perform an analy-
sis of individual permission and collaborative permissions
and apply three ranking methods on the permission fea-
tures. After the ranking step, they identify risky permis-
sion subsets using Sequential Forward Selection (SFS) and
Principal Component Analysis (PCA). They evaluate their
approach using SVM, decision tree and random forest. The
result shows that their strategy for identifying risky permis-
sions can achieve a 94.62% detection rate with a 0.6% false
positive rate. Their low false positive rate is brought by
their use of a large benign datasets (80% of 310,926 be-
nign apps) for model training, which incurs considerable
overhead and produces skewed model. As such, the reim-
plementation of their method produces different results as
shown in Section 3.4. Moreover, our work needs less per-
missions compared to this work, but a high detection rate
can still be achieved.

5 Conclusion

In this paper, we have shown that it is possible to reduce
the number of permissions to be analyzed for mobile mal-
ware detection, while maintaining high effectiveness and
accuracy. SIGPID has been designed to extract only sig-
nificant permissions through a systematic, 3-level pruning
approach. Based on our dataset, which includes over 1000
malware, we only need to consider 22 out of 135 permis-
sions to improve the runtime performance by 85.6% while
achieving over 90% detection accuracy. The extracted sig-
nificant permissions can also be used by other commonly
used supervised learning algorithms to yield the F-measure
of at least 85% in 55 out of 67 tested algorithms. SIGPID is
highly effective, when compared to the state of the art mal-
ware detection approaches as well as existing virus scanner.
It can detect 93.62% of malware in the data set, and 91.4%
unknown malware.

Acknowledgment

We thank the anonymous reviewers for their insightful
feedback on our work. This work is supported in part

by NSF, DARPA and Maryland Procurement Office un-
der grant numbers CNS-1566388, FA8750-14-2-0053 and
H98230-14-C-0140, respectively. Any opinions, findings,
conclusions, or recommendations expressed here are those
of the authors and do not necessarily reflect the views of the
funding agencies or the U.S. Government.

References

[1] R. Agrawal, R. Srikant, et al. Fast algorithms for mining
association rules. In Proc. 20th int. conf. very large data
bases, VLDB, volume 1215, pages 487-499, 1994.

[2] D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, K. Rieck,
and C. Siemens. Drebin: Effective and explainable detec-
tion of android malware in your pocket. In Proceedings of
the Annual Symposium on Network and Distributed System
Security (NDSS), 2014.

[3] G. DATA. G data mobile malware report. 2015, Accessed

at Sep. 6, 2016.

[4] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P.
Cox, J. Jung, P. McDaniel, and A. N. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy mon-
itoring on smartphones. ACM Transactions on Computer
Systems (TOCS), 32(2):5, 2014.

[5] A.P. Felt, E. Chin, S. Hanna, D. Song, and D. Wagner. An-
droid permissions demystified. In Proceedings of the 18th
ACM conference on Computer and communications secu-

rity, pages 627-638. ACM, 2011.
[6] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang.

Riskranker: scalable and accurate zero-day android malware
detection. In Proceedings of the 10th international confer-
ence on Mobile systems, applications, and services, pages
281-294. ACM, 2012.

[7] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann,
and I. H. Witten. The weka data mining software: an update.

ACM SIGKDD explorations newsletter, 11(1):10-18, 2009.

[8] H. He and E. A. Garcia. Learning from imbalanced data.
IEEE Transactions on Knowledge and Data Engineering,
21(9):1263-1284, Sept 2009.

[9] C.-Y. Huang, Y.-T. Tsai, and C.-H. Hsu. Performance eval-
uation on permission-based detection for android malware.
In Advances in Intelligent Systems and Applications-Volume
2, pages 111-120. Springer, 2013.

[10] I IDC Research. Smartphone os market share, 2015 g2. In
IDC Research Report, 2015.

[11] G. Kelly. Report: 97% of mobile malware is on android. this
is the easy way you stay safe. In Forbes Tech, 2014.

[12] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychron-
akis, and S. Joannidis. Rage against the virtual machine:
hindering dynamic analysis of android malware. In Proceed-
ings of the Seventh European Workshop on System Security,
page 5. ACM, 2014.

[13] Symantec. Latest intelligence for march 2016. In Symantec

Official Blog, 2016.
[14] W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang.

Exploring permission-induced risk in android applications
for malicious application detection. Information Foren-
sics and Security, IEEE Transactions on, 9(11):1869-1882,
2014.

