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Abstract—In recent years, the scale and diversity of malicious
software on mobile networks are constantly increasing, thereby
causing considerable danger to users’ property and personal
privacy. In this study, we devise a method that uses the URLSs
visited by applications to identify malicious apps. A multi-view
neural network is used to create a malware detection model
that emphasizes depth and width. This neural network can
create multiple views of the input automatically and distribute
soft attention weights to focus on different features of input.
Multiple views preserve rich semantic information from input for
classification without requiring complicated feature engineering.
In addition, we conduct comprehensive experiments to compare
the proposed method with others and verify the validity of the
detection model. The experimental results show that our method
has a certain timeliness. It can not only effectively detect malware
discovered in different months of a certain year, but also detect
potentially malicious apps in the third-party app market. We also
compare the detection results of the proposed method on wild
apps with 10 popular anti-virus scanners, and the final result
shows that our approach ranks second in terms of detection
performance.

I. INTRODUCTION

The popularity of mobile devices has driven the advent of
the mobile internet era. A recent report [1] shows that the
number of available apps in Google Play Store exceeded 1
million in July 2013 and reached 3.5 million in December
2017. However, the quantity and diversity of mobile malware,
particularly those that target Android platforms, have increased
dramatically [2]. Mobile devices are increasingly associated
with personal property and privacy information, which may
pose multiple threats to users if compromised. Thus, effective
mobile malware detection systems are urgently needed.

A recent survey [3] studies the behavior of a wide variety
of malware and classifies existing mobile malware detection
methods into three categories, i.e., static analysis, dynamic
analysis and traffic-based methods. However, static analysis is
challenged by the code polymorphism and obfuscation of mal-
ware [4]. These mechanisms are used to generate variants of
malware to evade detection. Other dynamic analysis methods
attempt to modify the device OS to track and access sensitive
information at runtime [5]. These techniques are effective but
require a sufficiently large set of executions to cover app
behaviors. Thus, performing dynamic analysis on resource-
constrained smart devices is challenging.
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In addition, many malware detection methods focus on
the network traffic generated by mobile apps. The core of
network traffic-based methods is to find distinctive features
for efficient malware classification. However, feature selec-
tion is notoriously difficult. For example, in order to extract
diacritical features from network traffic, researchers need to
observe a large amount of network traffic data and understand
the operating mechanism of malware, which is indeed time-
consuming and labor-intensive. Through URL analysis, we
find that “imei”,“longitude”,“latitude”, “apikey” and other du-
bious words are frequently used in malicious URLs. However,
benign URLs usually do not contain these words. Therefore,
we design a malware detection method that is based on URLs.
The proposed method, which executes URL segmentation
and vectorization operations and does not require a time-
consuming feature selection process. We use a novel multi-
view neural network [6] that focuses on width and depth of
neures to mine URL feature information from multiple levels
automatically to address the challenge of feature selection,
while retaining the rich semantic from the input data.

In summary, we provide the following contributions to the
literature on Android malware detection.

e We perform text-like segmentation and vectorization on
the URLs which is instructive to malware detection
using network traffic.

e We use a multi-view neural network to implement deep
and broad discriminative feature learning that addresses
the feature selection difficulty in malware detection via
network traffic.

e Multi-group experiments are performed to evaluate d-
ifferent influential factors on malware detection model.
Meanwhile, we compare our method with other meth-
ods and several anti-virus scanners, and the detection
model has a good performance on wild malware in the
application market.

The remainder of this paper is organized as follows. Related
work is introduced in Section II. Section III introduces the
methodology of our malware detection method in detail. The
experiment and evaluation of our method are discussed in
Section IV. Section V concludes the paper.



II. RELATED WORK

At present, most malware detection methods based on
network traffic use machine learning algorithms to build their
detection models. The general processes of these methods
include analyzing a large number of traffic data, selecting
effective features that can distinguish between benign and
malicious or different malware families, and then training
malware classification models using machine learning algo-
rithms. The works [7-9] all apply machine learning algorithms
with traffic data to implement malware detection. In general,
most malware identification methods based on network traf-
fic and machine learning algorithms are excessively feature-
dependent. These features may be specific traffic fields, static
signatures, and statistics characteristics. However, identifying
these effective features from network traffic is extremely
difficult.

Deep learning is a branch of machine learning, which is a
set of algorithms. The biggest advantage of deep learning is
that it replaces handcrafted feature selection with the use of
effective algorithms. One previous work [10] described a new
idea for traffic identification and shows that each payload byte
in a TCP session is in the range of 0 to 255, which is consistent
with the range of each pixel in one picture. The TCP session is
presented as a picture and each byte as a pixel. A convolutional
neural network (CNN) is used in [11] to extract the abstract
feature representations of HTTP headers and thus map the
traffic to the app that generated it. In addition, [12] uses deep
belief networks to generate invariable compact representation
for malware behavior, thereby potentially identifying most
variants of existing malware effectively.

Deep learning is effective in selecting features, and many
malware detection studies based on deep learning have
achieved excellent performance. In this paper, we use a multi-
view neural network to mine the multi-level features in URLSs
and further identify malware through malicious URLs. This
structure focuses on the depth and the width of data. There-
fore, in theory, this model has strong feature selection and
extraction capabilities, and our experimental results confirm
this assumption.

III. METHODOLOGY

We have designed an Android traffic collection platform,
from which we can obtain actual network traffic generated by
apps at network access point. A multi-view neural network
is used to automatically discover discriminative features of
malware and benign apps from multiple views of URLs.

A. Traffic Collection

The traffic collection platform comprises three components,
i.e., the control center, traffic acquisition module, and app &
traffic storage module. The three components communicate
with one another by a LAN switch. The control center is
used to allocate traffic acquisition tasks to the machines in
the traffic acquisition module, which then collects the traffic
data generated by specific apps. The app & traffic storage
module is used to store apps and the network traffic data they

generate. These three components work together to effectively
collect Android network traffic.

Traffic acquisition module module consists of multiple
machines, and every machine has several Android emulators.
Each app is installed on an emulator, which is restarted to
stimulate the malware into performing malicious behavior.
After restarting each emulator, we also start the interface
traversal program to allow each app interface to simulate
human actions as much as possible. In the meantime, we
collect the traffic data generated by this app in the first few
minutes of operation. The last step is transferring the collected
traffic to the app & traffic storage module.

B. URL Processing

1) URL Extraction: In this work, we are concerned only
with the URLs in the HTTP traffic. Evidently, once an app
visits a malicious URL, it may become a malware. In addition,
most malware use the parameters in URLs to receive com-
mands to further perform malicious behavior [13]. Therefore,
malware detection based on URLs is effective. The first step
in traffic processing is extracting the URL string from the
network traffic data using the tshark command.

2) URL Segmentation: Each URL is a string with many
characters. We believe that a single character cannot express
valuable information. For example, extracting only one char-
acter from the host name “www.baidu.com”, does not make
any sense; only when it is regarded as a unit can it express
a complete domain name. Then, we split each URL into
different components, where every segment represents a unit
that expresses certain information. We use special characters,
such as “/7, “&” . , to divide each URL into multiple
segments, each of which is considered a URL segment.

C. URL Vector Representation

Common one-hot encoding method causes serious data s-
parsity problems, which pose challenges for follow-up calcula-
tion. Moreover, the related information between segments and
the semantic information of context are lost with this encoding
method. Thus, we train low-dimensional dense vector for each
segment through one-hot encoding. We use the skip-gram
algorithm [14] in word2vect to train the vector representation
of each segment. Skip-gram is a neural network model that
allows the prediction of the likelihood that other words appear
near the center word. Nearby words can be measured with a
window size. If the window size is 2, then the first two input
words before the center word and the two succeeding words
are the nearby words of this word. Thus, the skip-gram model
is given a central word to predict the context.

In our scenario, suppose the URL string is
“http://example.com:8080/over/there ’name=ferret&color=
black”, and the ordered segment set that is divided by the
URL includes “http example.com:8080 over there name ferret
color black”. If we set the window size to 2, then the segments
in the vicinity of “name” include “over”,“there”,“ferret” and
“color”. The training goal of the skip-gram model to obtain
the maximum probability of nearby segments. The input



layer of the model is the one-hot encoding for segment
“name”. The output layer is the probability of other segments,
according to the center segment, and the connection weights
from the input layer to the hidden layer is an embedding table
for segment vector representation. In the learned embedding
table, each row is a vector representation of one segment,
whose current position is equal to “1”. Figure 1 illustrates
the skip-gram neural network.

Probability that the

i E > word at arandomly
10| L (\f{ chosen, lfeaijyr i
0 /’ — N\ ~ positionis “over
ol / N
The ‘1’ inthe 101/ = » there
position corresponding o1 % é’
to the word “name” mn ~ NN
0]
0| » ..ferret
o oL
= z
@ » ..color
URL Vector Hidden Layer Output L ayer

Fig. 1: The schematic diagram of skip-gram neural network

D. Multi-view Neural Network
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Fig. 2: The structure of used multi-view neural network

The structure of the multi-view neural network is depicted
in Figure 2. We create multiple S+ based on the input URL
vector. Each S+ is derived from the sum of the softmax
weights of the input URL vector. Then, each S+ is converted
to a view, and every view, except the first and last ones, is
affected by all the previous views. All views are fed into a
fully connected layer, followed by a softmax classifier.

1) Multiple Attentions for Selection: Each selection S+ is
created by focusing on different subsets of the URL vectors.
It is determined by the sum of the input data of the softmax
weights [15]. Considering that a URL contains H segments,
we represent the URL as a matrix whose shape is H X m.
Each row in the matrix corresponds to a URL segment, which
is represented as a m-dimension vector, and is provided by a
learned embedding table. The selection S+ for the ith view
is the sum of the features of the softmax weights.

H
st => dinBlh:h (1)
h=1

where the weights d; j, are computed by the following:

eMi,h
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my.p, = w; tanh(W B[h : h]) (3)

Here, w; (a vector) and W (a matrix) are learned selection
parameters. The selection for each view can focus on different
URLs from B (URL vectors) by varying the weights d; ;,, as
illustrated by the differently colored curves that connect to S+
in Figure 2.

2) Aggregating Selections into Views: After calculating
each S+ for each view, the formula for calculating each view
by S+ is introduced as follows:

V] = sf; vy = s“t 4)

v; = tanh(W ([v1;v2; ...;vi—1; 87 ]))

for i=2.V-1 (5

where W} is the parameter to be learned and [:;:] represents
the concatenated multiple matrix. The first and the last views
are only determined by their corresponding S+, but v1 and
vy play different roles. vy is only determined by S+ and
not affected by other views. The purpose of vy is to increase
the diversity of views [16]. On the contrary, vl forms the
basis of multiple views (from v2 to vy _;). The previous
views are stacked together and concatenated with S+ for the
views. Thus, this structure allows each view to be aware of
the information of the preceding views.

3) Classification with Views: The final step is classifying
the views generated by the URL vectors. Our model first
combines multiple views and feeds them into a fully con-
nected layer, followed by a softmax classifier, which produces
a probability distribution for different classes (i.e., benign
and malicious). Dropout regularization [16] is used in this
softmax layer. In addition, we use cross-entropy as the loss
function to guide the model’s training process. Adam, which
is an algorithm for first-order gradient-based optimization of
stochastic objective functions, is used as the specific optimiza-
tion algorithm [17].

IV. EXPERIMENT AND EVALUATION

In this section, we elaborate on the experimental details
and evaluate the performance of our model. We focus on the
following four aspects:

A. Data Sets

1) URL Segment Selection: Our malicious apps are down-
loaded from the ViruShare website [18], which shares samples
of suspicious apps to security researchers. We obtain 40,751
malicious apps that were discovered from 2014 to 2016.
Our benign apps are downloaded from multiple popular app
markets by an app crawler. More than 10,000 benign samples
are initially obtained. Each app downloaded from the app
market is sent to VirusTotal [19], which decides whether the
app is malicious or not. The app is then added to our benign
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Fig. 3: The impact of segment number and embedding size on malware detection model

app set if the test result is benign. Eventually, we obtain
a benign app set of 8,168 samples. This result ensures a
clear boundary between the benign and malicious data sets
to increase the credibility of the detection results.

Massive traffic data are collected using an automatic mobile
traffic collection system (Section III-A). Finally, we obtain
18.9 GB network traffic data generated by the malware sam-
ples. However, not all traffic data generated by malware is
malicious. We extract 968 MB malicious behavior traffic from
this data by a domain list named “blacklist”. Similarly, we
obtain 14.2 GB data generated by the benign apps. From the
traffic data, 61,436 benign URLs and 27,500 malicious URLSs
are extracted.

B. Parameter Setting

The three parameters that affect the multi-view neural
network are the URL segment number, the embedding size
of each URL segment and the view number.

1) URL Segment Number: Various URLs have different
lengths and can be split into varying segments. However,
our multi-view neural network requires a unified input shape.
Thus, we should fix a segment number H. The URL segment
that exceeds the fixed number H is discarded, and that whose
number is less than H is padded with a specific segment (blank
space). A statistical analysis is performed on the segment
number of the malicious and benign URLs and we find that
the segment number of most URLs is within 40.

We vary the value of H from 5 to 40 and the interval is set
to 5 to select the best segment number. We develop different
models with different segment numbers, and the result is
shown in Figure 3(a). The experimental result shows that
the segment number only slightly affects the final detection
model. In addition, the training time of the multi-view model
increases with the fixed segment number H. Considering the
performance and calculation time, we set H as 15.

2) Embedding Size Selection: We regard each segment as a
unit and use the skip-gram algorithm to train the vector repre-
sentation of each segment. We change the segment dimension
from 50 to 250 and the interval to 50 to explore the ultimate

effect of the vector dimension on the model. The final result of
the detection model under different segment embedding sizes
is shown in Figure 3(b).

The horizontal ordinate in Figure 3(b) represents different
embedding sizes of each segment, and the vertical coordinate
represents the accuracy rate, AUC, and F-Measure of the
model at different segment embedding sizes. The experimental
results show that the dimension of the segment vector only
slightly influences the final training result. A long embedding
size does not always improve the effect. Once the embedding
size is greater than a certain value, the effect of the model
shows a downward trend. We set the embedding size to 100,
considering the performance of the model under different
segment embedding sizes and execution efficiencies.

3) View Number Selection: We change the number of
views from 1 to 10 and train 10 different models to explore
the influence of view number on the final model. The result
indicates that predictive accuracy, AUC, and F-Measure can
be improved by increasing the number of views. However, not
too many views are required to achieve optimal performance
on the task. In this work, we set the view number is 6. For
different application scenario, the view number of the multi-
view neural network should be tuned.

C. Comparison with Other Methods
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Fig. 4: The detection performance comparison of different
machine learning algorithms



1) Comparison with Other Machine Learning Methods:
Here, we compare the detection performance of the proposed
multi-view neural network with that of popular machine learn-
ing algorithms. We select SVM, KNN (N=5), C4.5, Adaboost,
and naive Bayes. We attempt to use multiple sets of parameters
to maximize the performance of each algorithm. The final
results of the different algorithms are shown in descending
order in Figure 4. The best classifier among the classic
machine learning algorithms is KNN (N=5). Compared with
them, the multi-view model performs the best in terms of
accuracy, AUC, and F-Measure, thereby proving its capability
for automatic feature selection.

2) Comparison with Statistical Feature-based Method: In
work [20], the author analyzes a large number of benign and
malicious traffic data and designs six TCP statistical features to
distinguish between benign and malicious traffic. The specific
features and their descriptions are shown in Table I.

We extract six features and finally obtain 64,423 benign
and 31,859 malicious feature samples and train an effective
detection model that are based on these samples using our
traffic data and the C4.5 algorithm. The F-Measure of model
is only 80.15% which is lower than multi-view model. We
conclude that the features that the multi-view neural network
learned are more distinguishable than those learned by hand-
crafted statistical features. The method based on TCP flow
statistical features performs poorly because the author focuses
only on the traffic data and the features cannot effectively
represent other traffic characters. This result also shows that
the features automatically selected by the multi-view neural
network provide remarkable flexibility. Regardless of the data
set, we can directly feed the data to the multi-view neural
network for automatic feature selection after pretreatment.

TABLE I. Network-level statistical features that can distin-
guish between benign and malicious traffic

[

d  Feature Description

Uploading bytes(client->server)

Downloading bytes(server->client)

Total upload packet number in a session(client->server)
Total download packet number in a session(server->client)
Average bytes of upload packets(client->server)

Average bytes of download packets(server->client)

NN W=

3) Comparison with Flow header-based Method: Our
model focuses only on URL strings in HTTP traffic; likewise,
many previous works also focus on HTTP traffic for malware
detection. For example, the work in [20] develops another
malware detection model that is based on the traffic data, i.e.,
network-level attribute field features that can distinguish be-
tween benign and malicious traffic in the HTTP request header.
Attribute field features include the host, request method, URL
path, and user-agent. Different fields are preprocessed with
different methods. Then, the SVM algorithm is used to create
the detection model.

On our traffic data, we follow the steps in [20] and extract
61,359 benign and 27,498 malicious samples. We also create a
classification model using the SVM algorithm. The F-Measure

of this model is 95.74% which is better than that of TCP
flow statistic features but cannot surpass that of our method.
This experimental result indicates that our method can achieve
an acceptable performance by using only URLs and without
heavy feature engineering.

D. Detection of Malware over Different Periods

To bypass anti-virus scanners, attackers may attempt to
produce malware variants to poison and cheat the detection
model. To evaluate the effectiveness of our model on new
malware samples, we download 430 malware that were newly
discovered in 2017 from VirusShare and divide the samples by
month. A total of 83.5 GB network traffic from the malware
samples are collected. We extract 3890, 3421, 179, 892, 418,
1390, 1612, 27, 0, 619, 418, and 321 URLs from the traffic
data generated by the malware from January to December
2017. The trained model is applied to detect these URLSs, and
the detection rates on the malware from different months are
shown in Figure 5(a).

Our model achieves the best detection performance (100%)
on malware from March, May, June, August, and December
but discovers merely 83.33% of the malware samples from
November. The result shows that the time characteristic of
malware affects the models detection performance, but our
model can effectively detect most new malware which proves
its time-based effectiveness.

E. Detection of Malware in the Wild

We use some new apps downloaded from Android app
markets to verify its effectiveness in the wild. These apps have
no intersection with those apps used in the training process.
The traffic data generated by these wild apps are obtained
from the traffic generation and collection platform. These
traffic data are processed (i.e., URL extraction, segmentation,
and vector representation) and then fed into the multi-view
neural network. Each URL label (i.e., malicious or benign)
is determined using the trained detection model. An app is
deemed to be malware if it visits a malicious website though
a URL. In the wild app set of 337 apps, 242 are confirmed
malicious apps by the detection report of VirusTotal. These
242 malicious apps are filtered by approximately 60 anti-virus
scanners in VirusTotal. However, each scanner in VirusTotal
can detect only a portion of these malware samples. We com-
pare the performance of our model against ten selected anti-
virus scanners, i.e., ESET-NODE32, Avira, Sophos, McAfee,
BitDefender (abbreviated as BitD in Figure 5(b)), Kaspersky,
AVG, F-Secure, ClamAYV, and Pandas. Figure 5(b) shows the
detection performance of each scanner in descending order.
The best scanner is ESET-NODE32, which can detect 56.20%
of malware, whereas Pandas discovers 0 malware. Our method
follows ESET-NODE32 with a detection rate of 50% and out-
performs nine other anti-virus scanners. The reason for ESET-
NODES32 has a better performance is that it integrates dynamic
behavior detection, UTFI scanning and other technologies that
are more comprehensive than ours.
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V. CONCLUSION

We present an approach to detecting malware based on
malicious URLs. Our method divides each URL into several
segments using specific characters and then uses the skip-
gram algorithm to train the embedding for each segment. This
vectorization method solves the data sparsity and semantic
loss problems that common encoding methods cause. We feed
the URL vector into a multi-view neural network, which
can automatically create multiple S+ using the input data
and generate multiple views. The network focuses on depth
but also emphasizes width and can complete the automatic
selection of features from multiple views. We design a set
of experiments to verify the effectiveness of our method
and compare our technique with several other methods. The
experimental result shows that our model performs well on
the test set. In addition, we apply this model for wild malware
detection and find that it has excellent detection capability.
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