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Abstract

Security organizations increasingly rely on Cyber Threat Intelligence (CTI) sharing to enhance re-
silience against cyber threats. However, its effectiveness remains dubious due to two major limitations: first,
the existing approaches fail to identify the unseen types of Indicator of compromise (IOC); second, they are
incapable of automatically generating categorized CTIs with domain tags (e.g., finance, government), which
makes CTI sharing ineffective. To combat the challenges, this paper proposes TIMiner, a novel automated
framework for CTI extraction and sharing based on social media data. Particularly, an efficient domain
recognizer based on convolutional neural network is first implemented to identify CTIs’ targeted domain.
Then, an indicator of compromise (IOC) extraction approach based on word embedding and syntactic
dependence is proposed, which provides the ability to identify unseen types of IOCs. Finally, the extracted
IOC and its domain tag are integrated to generate a categorized CTI with specific-domain. TIMiner is capable
of generating CTIs with domain tags automatically. With the categorized CTIs, Threat-Index is presented to
quantify the severity of the threats toward different domains. Experimental results confirm that the proposed
CTI domain recognizer and IOC extraction achieve superior performance with the accuracy exceeding 84%
and 94%, respectively. Moreover, TIMiner stimulates new insights on the evolution of cyber attacks across
multiple domains.
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1 INTRODUCTION

Recently, cyber criminals are becoming increasingly sophisticated, and are capable of exploit-
ing zero-day vulnerability and advanced persistent threat (APT) [1], [2]. Evildoers consistently
permeate and attack cyber systems to steal sensitive information, take control of the target system,
and collect ransom.

Traditional safeguards, such as firewall, signature registry, and intrusion detection system (IDS),
hardly prevent these novel attacks [3], [4]. For example, the WannaCry ransomware that was
launched on May 2017 spread across 150 countries and infected more than 230,000 computers
within one day [5]. To protect systems from such destruction, security experts have proposed
Cyber Threat Intelligence (CTI) that consists of the indicator of compromise (IOC) to release an early
warning when a system encounters suspicious threats [6]. CTI consists, e.g., of reasoning, context,
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mechanism, indicators, implications, and actionable advice about an existing or evolving cyber
attack that can be used to create preventive measures in advance [7]. CTI allows subscribers to
expand their visibility into the fast-growing threat landscape, and enable early identification and
prevention of a cyber threat.

Recently, social media (e.g., Blogs (AlienVault blog, FireEye blog, etc), Vendor bulletins (
Microsoft, Cisco, etc), Hack Forums (https://hackforums.net)) have become an effective medium
for exchanging and spreading cybersecurity information, on which cybersecurity experts are
rushing to share their discoveries [8]. An increasing number of threat-related posts have been
published on social media, which often reveal new vulnerabilities, malware, or attack tactics,
providing one of the main raw materials for generating cyber threat intelligence [9]. Security
vendors have been increasingly extracting IOCs (e.g., malicious IP, malicious URL, malware, etc.)
from these first-hand threat descriptions to generate CTIs so as to proactively empower system
protection. Take WannaCry [5] as an example, if security guards can capture the threat intelligence
that Wannacry permeates port 445 to attack systems in the first place, the malicious intrusion can
be easily blocked by locking port 445, which is the most direct and effective way of combating
the WannaCry ransomware.

Early CTI extraction requires extensive manual inspection of the threat description, which
becomes rather time-consuming given the enormous volume of threat-related descriptions. To
facilitate the automatic generation and sharing of cyber threat intelligence, many CTI standards
and frameworks are established, such as IODEF [10], STIX [11], TAXII [12], OpenIOC [13], and
CyBox [14]. And most of existing IOC extraction tools follow the OpenIOC standard to extract
particular types of IOCs (e.g., malicious IP, malware, file Hash, etc), such as CleanMX1, PhishTank2,
IOC Finder3, and Gartner peer insight4, etc. Nevertheless, the existing IOC extraction methods
present the first limitation. Limitation 1: Most of existing approaches are incapable of identifying
unknown types of IOCs, making their effectiveness is doubtful.

Recently, numerous CTI platforms have emerged, and they indiscriminately share identified
threats with subscribers in different domains. However, the threat information is usually quite
generic, not shaped to particular domains, making it is ineffective for most domains [1]. In this
paper, it is investigated that well-known CTI frameworks (e.g., IODEF [10], STIX [11], TAXII [12],
OpenIOC [13], and CyBox [14]) and platforms (e.g., IBM X-Force5, Threat crowd6, Opencti.io7, Gartner
peer insight8, AlienVault9, etc), most of which do not offer domain tagging capabilities. As for the
Gartner peer insight and AlienVault, we carefully analyzed their domain tagging capabilities and
found that the domain tags need to be provided manually when submitting a new CTI, which
becomes rather time-consuming given an enormous volume of threat descriptions. Consequently,
the existing frameworks and platforms pose the second limitation. Limitation 2: The majority of
CTI platforms do not offer the capability of domain tagging for CTI, and they tend to indiscriminately share

1. http://list.clean-mx.com
2. https://www.phishtank.com
3. https://www.fireeye.com/services/freeware/ioc-finder.html
4. https://www.gartner.com/reviews/market/security-threat-intelligence-services
5. https://exchange.xforce.ibmcloud.com/
6. https://www.threatcrowd.org/
7. https://demo.opencti.io/
8. https://www.gartner.com/reviews/market/security-threat-intelligence-services
9. https://otx.alienvault.com/
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CTIs with organizations, most of which are irrelevant with their domains. As a result, extensive manual
efforts are required to extract relevant CTIs.

Actually, the optimal threat mitigation period is within 8 hours once a vulnerability or exploit
is exposed [15]. With the explosive growth of uncategorized CTIs (without domain tags), if the
critical response time is spent on selecting relevant CTIs, the best mitigation time may be missed.
Another real-world fact is that most CTI subscribers have limited budget for purchasing cyber
threat intelligence and they concentrate on CTIs relevant to their specific domains [16]. To combat
the challenges, it is urgent need an automated CTI generation framework, which is capable of
identifying unknown types of IOCs, and provides the domain tagging capability for CTIs to
ensure them can be personalized sharing to relevant subscribers. In this paper, the task of domain
tagging for CTI is formalized as below.

Definition 1. (Domain tagging for CTI). Given threat description collection T = {t1, t2, · · · , tn},
and domain tag set D = {d1, d2, · · · , dn}, the task of domain tagging for CTI is: (i) to assign an ap-
propriate domain tag dn to a particular threat description ti based on its semantic characteristics;
(ii) to extract IOCs from the threat description ti leveraging the proposed IOC extraction method;
(iii) to merge the domain tag dn of ti and extracted IOC from ti to generate the categorized CTI
with domain tag.

In the definition, ti is a threat description collected from social media sources in TABLE 8,
and dn is the corresponding domain tag for ti. In this paper, five domains that are most severely
threatened are highlighted, including finance, government, education, Internet-of-Things (IoT),
and Industrial Control System (ICS).

In fact, categorized CTIs with domain tags can bring the following advantages: first, the
categorized CTIs can enable personalized sharing, reducing the burden on subscribers to filter
out information that is irrelevant to them; second, the categorized CTIs allow subscribers to focus
on the threat information in their own domains and deepen their insight of most relevant threats;
third, categorized CTIs make it easier for security experts to demystify the evolutionary trend of
different threats in particular domains.

Challenges: Actually, it is a challenging task to label the domain tags for CTIs due to the
unclear boundaries between different domains of CTIs. For example, examples (a) and (b) in
Fig. 1 may be considered as belonging to the same domain by most people, whereas CTI providers
should be able to classify (a) as in ICS domain and (b) as in governmental domain. In fact, it is
difficult to distinguish the subtle characteristics of threat descriptions in different domains. Thus,
a more intelligent approach is needed, which can learn the more discriminative features between
different domains to address the problem of domain tagging for CTIs to enable personalized CTI
sharing.

This paper proposes TIMiner, a novel method to automatically extract and evaluate CTIs that
contain domain tags. TIMiner includes a convolutional neural network (CNN) based recognizer
that automatically identifies domains where CTIs belong to, and a hierarchical IOC extraction
method with seamless fusion of word embedding and syntactic dependency, which could identify
unseen types of IOCs. TIMiner merges IOCs with their corresponding domain tag to form a
comprehensive domain-specific CTI. To the best of our knowledge, this is the first study to generate
domain-specific CTIs that spark numerous novel insights. The main contributions of this paper are
summarized as follows:
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Fig. 1: Illustration of the challenges of identifying the domain of threat text. (a) depicts Stuxnet
virus that attacked industrial control system, (b) describes an attack specific to Georgia govern-
ment.

• Developing an automated CNN based domain recognizer to assign CTI to a corresponding
domain that it impacts. More specifically, this paper collects and analyzes more than
50,000 security texts describing threat events, and focuses on five domains that are most
seriously threatened, including finance, government, education, IoT (Internet-of-Things),
and ICS (Industrial Control System). The experimental result demonstrates that accuracy
of the proposed approach exceeds 84%.

• An automated IOC extraction method based on word embedding and syntactic depen-
dency is designed to extract IOCs from threat description texts, which not only guarantees
the high accuracy of predefined IOC extraction, but also identifies and extracts unseen
types IOCs. Experimental results verify that the proposed method achieves 94% and 92%
accuracy and recall, respectively. To date, more than 1,280,000 IOCs have been extracted
from unstructured security-related texts.

• This work presents Threat-Index, a novel safety assessment criteria, to evaluate the security
status of different domains. Threat-Index captures the differences of the threat impacts
across multiple domains, and quantifies the threat severity for each domain. We analyze
the threat trends in multiple industries, and explore the attack characteristics and tactics
that hackers undertake to disturb each domain.

• More than 118,000 texts/posts from January 2002 to November 2018 have been analyzed,
based on which we gain deep insights into the threat evolution in each domain. The most
intriguing insights are summarized below: (i) DDoS: all five industries suffer from DDoS
attacks, but the attack implementations vary significantly across multiple domains. For
instance, an increasing number of botnets are constructed for IoT DDoS, and attackers
utilize traffic amplification for financial DDoS attacks. (ii) Phishing: phishing attacks often
adapt to different forms according to the value of the attack target. For an increasing target
value, the phishing patterns evolve from email phishing to speared phishing, to ultimately the
most convoluted watering hole phishing. (iii) Ransomware: an emergence of a ransomware
is often followed by its variants immediately, while some of them will eventually evolve
into crypto-mining viruses.
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The remainder of this paper is organized as follows: related work is reviewed in section II.
Section III describes the overview of our proposed framework. In Section IV, illustrating the
proposed method, focusing on how to build domain recognizer and generate domain-specific
cyber threat intelligence. In Section V, introduce Threat-Index to quantitatively measure the threat
severity targets each domain, and present several protective recommendations. In Section VI,
threat evolution in different domains are investigated. Finally, conclude the work in section VII.

2 RELATED WORK

CTI has been regarded as an effective way to proactively withstand novel unseen network
attacks [17], [18]. Recently, It has been attracting attention from industry and academia, most
security researchers and communities focus on the efficient extraction of IOC (Indicator of Com-
promise) from social media that describes attack events. Initially, IOCs are extracted from famous
security knowledge bases, but they only cover a small types of IOCs, it is very difficult to leverage
the thin intelligence to defend against attacks. The explosive growth of threat-related social posts
provides a steady stream of raw materials for generating CTIs. OpenIOC framework defines
more 600 common IOC entities to guide IOC extraction. AlientVault OTX 10, iACE [19] follow
OpenIOC suggestion to capture IOCs from threat-related texts. Catakoglu et al. [20] developed a
system to extact IOCs from web pages. Sabottke et al. [21] established a tool to detect potential
vulnerability from tweets. Jamalpur et al. [22] utilized dynamic analysis to detect malware in a
Cuckoo sandbox environment. Ebrahimi et al. [23] applied deep convonlutional neural network to
capture malicious conversations in social media. Isuf Deliu et al. [24] explored machine learning
method to rapidly sift specific IOCs in hacker forums. However, the existing methods and tools
only recognize and extract predefined types of IOCs. Furthermore, there is a lack of solutions to
associate such uncategorized IOCs with relevant organizations. These limitations have weakened
the applicability and effectiveness of CTI sharing for cyber defense.

Recent works focus on formulating the taxonomy of cyber threat intelligence. Ahrend et al. [25]
divide CTI into formal and informal practices to uncover and utilize tacit knowledge between
collaborators. Hugh et al. [26] categorize CTIs into strategic and operational ones. Ray [27]
partitioned IOCs into three distinct categories: network, host-based, and email IOCs. To the best
of our knowledge, there is no method or framework for generating domain-specific cyber threat
intelligence and delivering them to relevant organizations.

Recently, numerous CTI platforms and products have emerged, they share the threats (e.g.,
new malwares, spreading viruses, latest vulnerabilities, etc) with subscribers in different domains.
However, the information is usually quite generic, not shaped to specific domains, which makes
it ineffective [1]. One study [16] argued that CTI community should standardize data labeling
to ensure security experts can then assess whether the data fits their needs. Moreover, according
to the survey [28], 66% of respondents complain that the uncategorized CTIs are insufficient
in perceiving suspicious cyber threats. Globally, domain-specific information sharing is required,
and the need is growing. For example, the financial sector (FS-ISAC)11, the retail sector (R-CISC)12,

10. https://otx.alienvault.com/
11. http://www.fsisac.com
12. http://r-cisc.org
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the electricity sector (E-ISAC)13, and the recently established automotive sector (AUTO-ISAC)14,
these sectors generally share intelligence in a manual and supervised manner [29]. The vertical
domain-specific information sharing platforms can ensure that the most relevant information
of the domain is shared between organizations. However, in the CTI field, all the popular
CTI platforms and standards including IODEF, STIX, TAXII, OpenIOC and CyBox can neither
automatically generate the domain-specific CTIs that contains domain labels, nor share CTIs with relevant
organizations that are interested in them. Therefore, it is of great significance to generate and share
CTI with domain tag (domain-specific CTI). In this paper, TIMiner, a novel CTI extraction and
sharing framework, is proposed. TIMiner can generate CTIs with domain tags and allows CTIs
can be personalized sharing to relevant subscribers.

3 FRAMEWORK OVERVIEW

TIMiner consists of five major components as shown in Fig. 2, the details of which are presented
below.

Fig. 2: The architecture of TIMiner: (1) Data collection module to collect security-related social
texts automatically. (2) Prepossessing module focuses on segmenting sentences, removing stop
words and punctuation. (3) Word-embedding module expresses the preprocessed texts into a low
dimensional vector space. (4) leveraging the word-embedding of each threat text as input to train
a domain recognizer to classify the threat intelligence into corresponding domains. (5) extract
the IOC from threat texts (step 2), and embed its domain tag (step 4) to generate a complete
domain-specific cyber threat intelligence.

• Threat-related data collection. TI spider, an automated data collection system, is de-
veloped, which collects threat-related data from different social media including blogs,
hacking forum posts, security news, security vendor bulletins, etc. Specifically, TI spider
consists of 75 independent distributed crawlers, each of which monitors and collects a

13. http://www.eisac.com
14. http://www.automotiveisac.com
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specific data source in TABLE 8. Each crawler utilizes breadth-first search to collect threat
descriptions, which starts the collection from a homepage describing threat events until
no new link can be invoked. For each link, the HTML source codes are first crawled, and
then to extract threat event data leveraging Xpath (XML Path language).

• Data preprocessing. The data preprocessing removes all punctuations, stopwords, and
markup characters using Stanford CoreNLP15. Data preprocessing not only reduces the
dimension of each text, but also mitigates the noisy features in word embedding.

• Word embedding. Word embedding converts natural language texts into the latent vector
space. In this paper, a word2vec model [30] specific to representing threat descriptions
is trained, which can effectively capture the interdependent relationships over words. The
embedding dim is to 200, which means that each word in threat descriptions is represented
by a 200-dimension vector.

• Recognition of CTI’s domain. Recognizing the domain of CTI is the necessary precursor
for constructing domain-specific CTIs. The framework of CTI domain recognizer is pre-
sented in Fig. 4, in which leveraging 256 filters with kernel=5 to learn the local features of
each threat description, and then splicing the pooled feature vectors into a fully connected
layer. Finally, utilizing soft-max activation function to calculate the probability of each
domain tag of CTI.

• Domain-specific CTI generation. This module generates domain-specific CTIs with do-
main tags. First, an IOC extraction tool based on word embedding and syntactic depen-
dency is developed to extract IOCs, which can effectively identify unknown IOCs that are
not recorded in OpenIOC [13]. Then, combining the IOC and its domain tag to generate a
categorized domain-specific CTI, an example of which is illustrated in Fig. 3 (b).

(a) Traditional CTI. (b) Domain-specific CTI.

Fig. 3: (a) and (b) are extracted from the same cyber threat description depicting financial threat
event. Comparing with (a), (b) can be personalized sharing to finance-related organizations since
it is clearly labeled as ”finance” domain.

4 PROPOSED METHOD

This section illustrates the design of TIMiner. First, introducing the convolutional neural net-
work (CNN) based recognizer to identify which domain a cyber threat intelligence belongs to.

15. https://stanfordnlp.github.io/CoreNLP/
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Then, describing the proposed hierarchical IOC extraction method, which can not only accu-
rately extract predefined IOCs but also effectively capture unknown IOCs that not enrolled in
OpenIOC [13].

4.1 CTI’s Domain Identification
4.1.1 Domain Recognizer

Fig. 4: The overview of CTI domain recognizer

This paper implements a CTI domain recognizer based on a variant of CNN model [31], the
architecture of which is presented in Fig. 4. The main process is illustrated in Algorithm 1.

Algorithm 1 Constructing CTI Recognizer

Require: Threat event descriptions T = {t1, t2, · · · , tn}.
Ensure: Domain Tag ŷi.

1: for each ti ∈ T do
2: words← preprocessing (ti)
3: word vector← word2vec (words)
4: for each epoch do
5: local features← convolution (word vector)
6: max features← maxpooling (local features)
7: merge feature← connecting (max features)
8: ŷi ← max(softmax(merge feature))
9: L(yi, ŷi)← −5

∑
i∈N yi · logŷi

10: end for
11: end for
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Word representation is one of the most fundamental task in natural language processing (NLP).
One-hot encoding and distributed word representation are popular approaches used in text
classification and sentiment analysis, however, they often result in inferior word embedding
as ignoring the interactive relation among words. In this paper, a word2vec model [30] specific
to threat description embedding is trained, which takes a large corpus of threat descriptions as
its input and produces a low-dimensional vector, with each unique word in the corpus being
assigned a corresponding vector in the latent space. Formally, a word embedding E: word→ Rn is
a parameterized function that maps words in natural language to latent vector space. For instance,
word “attacker” is embedded in a vector:

Embedding (“attacker”) = (−3.399,−4.462, 3.136, ...)

The convolution operation applies a filter w ∈ Rh×d to a window of h words to generate a new
feature marked as f . Then, the max pooling operation runs over the feature map and takes the
maximum F = max{f}, which captures the most important feature with the highest value for
each feature map. In addition, word2vec arranges the vector space so that the words with similar
contexts in the corpus are located in close proximity with one another, which allows our model
to capture the interdependent relationships between words. With the learned word embedding
of each threat description, the convolutional operation can be conducted to learn the features of
CTIs in different domains.

ŷ = max(softmax(σ(X ·W + b))) (1)

where X = [x1, x2, · · · , xi] is the word embedding of each threat description, W = [w1, w2, · · · , wi]
denotes the weights of words for identifying the domain of a threat description, b is a bias vector
that captures all other factors which influence ŷ other than the X , and σ(·) represents an activation
function, such as relu.

Domain recognizer adopts cross-entropy as the loss function, and leverages stochastic gradient
descent to minimize the loss function L(yi, ŷi).

L(yi, ŷi) = −
∑
i∈N

yi · logŷi, (2)

where yi is the real domain tag of threat text i, and ŷi is the corresponding predicted domain tag.

4.1.2 Performance Evaluation
Datasets. TI-spider, an automated data collection tool, is developed to persistently collect threat
description data that portrays cyber threat events. TI-spider monitors 75 threat-related data sources
including security blogs ( AlienVault, FireEye, Webroot, etc), security vendor bulletin (Microsoft,
Cisco, Kaspersky, etc) and the posts published in hacking forums (Webroot, HackerForum, etc). The
data sources are listed in TABLE 8 in Appendix. So far, TI-spider has collected more than 118,000
threat-related descriptions over the past 16 years from January 2002 to November 2018. The
overall threat text statistics is demonstrated in Fig. 5 (a), and Fig. 5 (b) depicts the distribution
of the domain-specific documents. Actually, in order to train and evaluate our proposed method,
five cybersecurity researchers (three PhDs and two Masters) spent efforts (about fortnight) to
manually label the collected data. Particularly, the five researchers independently labeled the col-
lected threat descriptions leveraging the domain tags including education, finance, government,
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(a) The number of threat texts per year. (b) Threat text distribution statistics.

Fig. 5: Statistics of collected security-related texts.
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Fig. 6: Performance of different recognition methods.

IoT, and ICS. To ensure the accuracy of data labeling, we test the consistency of the tags labeled by
five researchers for each piece of data and remove the data with ambiguous tags. In other words,
the final dataset consists of data consistently labeled by the five researchers, which constitutes a
valid source of ground truth. As a result, we generate a final dataset with 15,000 labelled threat
descriptions equally covering five domains. For the labeled data, 70% of them are used as training
data to train our proposed model, another 20% of them to evaluate the model, and the rest for
testing the model.

To evaluate the performance of CTI domain recognizer, the proposed method is compared
against three popular classification algorithms including support vector machine (SVM), K-
nearest neighbors (KNN), and recurrent neural network (RNN). The model parameters are fine-
tuned after training 3000 epochs, and the optimal parameters are recorded in TABLE 1.
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TABLE 1: The major parameters of CTI domain recognizer.

Parameter Value

Embeddding dim 200
Sequence length 1000

Number class 5
Number filters 256

Vocab size 56170
Hidden dim 128
Dropout rate 0.5
Learning rate 0.001

Batch size 64

Where, Embedding dim represents the dimension of vector for expressing each word, Se-
quence length stipulates that each text is represented by 1,000 words, thus, each text can be
represented as a seq length × embedding dim matrix. In our model, each threat description is
represented by a 1, 000 × 200 matrix. The threat descriptions with less than 1,000 words are
padded with “0”. Num filters denotes the number of convolutional filters, vocab size is the total
number of words that can be covered by the model, and hidden dim indicates the number of
neurons in hidden layer.

Results. As shown in Fig. 6 (a), KNN and SVM achieve 68% and 71% of recognition precision,
respectively. A deeper inspection into the training data exposes that the boundaries of threat
descriptions illustrating attacks in different domains are unclear. For example, for two attack
events targeting IoT and ICS domains, the descriptions of “sykipot virus will hijack windows
smart devices” and “Stuxnet is targeting SCADA systems” produce word vectors that resemble
each other as computed by word2vec [30]. As a result, KNN and SVM fail to detect such subtle
differences, resulting in an unsatisfactory precision.

In contrast, RNN and CNN achieve a much higher recognition precision as shown in Fig. 6(a).
The performance of CNN outperforms that of RNN with a classification precision of 84% uti-
lizing all training data. Generally speaking, RNN performs better than CNN for the tasks of
translation and question-and-answer (Q&A), which should integrate contextual information in a
complex text or a dialogue [32], while CNN often excels in tasks that do not require a long-term
memory [31].

There are two major reasons to choose CNN over RNN for constructing the CTI domain
recognizer. First, the experimental results confirm that CNN achieves the best recognition result
with a simpler architecture than that of RNN. Second, CNN occupies significantly less computing
resources than RNN. The execution time of the four comparing approaches on 15,000 samples is
presented in Fig. 7. Specifically, with the same running environment (i.e., Intel(R) Core(TM) i7-
6700 CPU @ 3.40GHz, 16 GB RAM, 4 Cores), the model training time of RNN (1,260 minutes) is
more than 21 times that of CNN (57 minutes).

4.2 Domain-specific CTI Generation
This section aims to address the challenge of extracting IOC from threat descriptions. Existing
studies have been extracting useful information from technology blogs and web applications [6],
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Fig. 7: Performance comparison of execution time with four methods.

[19], [33]. However, they cannot identify unknown types of IOCs that are not enrolled in OpenIOC
list, and they do not provide the capability of domain tagging for CTIs. As mentioned before, CTI
subscribers wish to receive valuable CTIs related to their domains. This section illustrates the
detailed design of our proposed domain-specific CTIs, which consists of two major components
as described below.

4.2.1 Identifying IOC Candidates
In this section, a hierarchical IOC extraction method is presented. Different from existing work,
the proposed IOC extraction method can effectively recognize the unknown types of IOCs . The
process of recognizing IOCs can be divided into three steps.

(step i) Regular expression matching. For the IOCs such as hash code and malicious DNS,
it is difficult for traditional natural language processing tools (e.g., NLTK, LTP) to recognize
them. Fortunately, most of them present certain structures, such as malicious IP (xxx.xxx.21.30),
vulnerability number (CVE-xxxx-xxxx), which can be effectively identified by regular expression.
Some regular expression samples for recognizing IOCs are demonstrated in TABLE 2.

TABLE 2: Regular expression samples of recognizing IOC.

IOC TYPE Regular Expression

CVE CVE-[0-9]{4}-[0-9]{4,6}

MD5 [a-f 0-9]{32}|[A-F 0-9]{32}

SHA1 [a-f 0-9]{40}|[A-F 0-9]{40}

Email [a-z][ a-z0-9 ]+[a-z0-9]+.[a-z]

Register [HKLM|HKCU]\\[ A-F 0-9]{40}

IP \d{1, 3}.\d{1, 3}.\d{1, 3}.\d{1, 3}

(step ii) Deep recognition. Named Entity Recognition (NER) has been extensively studied in the
NLP community. However, the existing NER tools (e.g., CoreNLP, NLTK, PyLTP) cannot be directly
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applied for identifying IOCs, since they have been regarded as brittle and highly field-specific,
and the models designed for one field hardly works on another fields. BiLSTM+CRF model [34],
on the other hand, can leverage both past and future features by virtue of a bidirectional LSTM
component, thereby producing a higher precision in text chunking and NER. As a result, this
paper implements an efficient tool based on BiLSTM+CRF to recognize IOCs that cannot be
matched using regular expressions.

(step iii) Novel IOC expansion. Combining regular expression matching (step i) and deep recogni-
tion (step ii) based IOC extraction methods, it is able to extract all types of IOC registered in
OpenIOC. However, the effectiveness of such method is questionable as there are an increasing
number of unknown or novel IOCs. Therefore, this step concentrates on identifying the unknown
IOCs. For example, for such words as “Maze” ,“AnteFrigus” and “PureLocker”, it is hard to
imagine that they would be closely linked to “WannaCry”, a destructive ransomware. As a result,
we need a word embedding method, which allows similar words to be closer to each other and
find unknown words with similar meanings when we search for a word in its embedded vector
space. Recently, Google research team released word2vec [30], an effective word representation
method, which goes beyond simple syntactic regularities and allows simple algebraic operation
in embedded vector space, e.g., “queen”-“woman’+“man”=“king”.

Inspired by word2vec, a word embedding model for threat intelligence is developed to
identify unseen IOCs. The word embedding model converts words into the latent vector space to
compare the similarities over words. Particularly, all preprocessed threat texts without stopwords
and punctuations are first aggregated in the words set, and transformed into a latent vector
space. Then, selecting the Top 5 most similar words to each IOC identified by step (i) and step (ii)
to be its IOC extensions, which greatly increases the coverage of IOCs. For example, the word
vector of “Maze” ,“AnteFrigus”,“Buran”, “PureLocker”, and “Dharma” are most similar to that of
“WannaCry”, thus they can be regarded as the extension of “WannaCry”. Thus, for each threat
description, it is capable of obtaining an IOC collection that consists of all suspicious IOCs,
denoted as IOCcandidate.

TABLE 3: The performance comparison of different threat entity recognition methods.

NER Tool Precision Recall F1-score

Alien OTX 0.72 0.74 0.73
Stanford NER 0.68 0.47 0.56
NLTK NER 0.65 0.52 0.58

iACE 0.92 0.87 0.89
Hierarchical IOC 0.94 0.92 0.93

Compared with other recognition tools such as Stanford NER, NLTK NER, AlientVault OTX and
iACE [19], our proposed IOC extraction approach demonstrates better performance in terms of
precision and coverage. As shown in TABLE 3, Stanford NER and NLTK NER perform the worse
when dealing with threat intelligence. Alien OTX mainly leverages regular matching to extract
IOCs, and its precision is low. iACE can effectively detect type-specific IOC from technological
contents. However, it cannot identify novel types of IOCs that are not enrolled in OpenIOC [13],
and thus, it achieves a lower recall than our proposed method.
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TABLE 4: The original trigger set of different threat events.

Category Trigger verbs

DDoS scan, attack, invade, access, am-
plify, destroy, block, jam, cripple

Phishing phishing, cheat, send, entice, trust,
inform, notice, steal, filch, capture,
catch

Ransomware ransom, encrypt, lock, access, close,
interdict, demand, claim, pay

APT monitor, detect, probe, exploit, pre-
tend, disguise, hide, conceal

Malware download, install, exploit, damage,
affect, break

4.2.2 Extracting Domain-specific CTI
In order to reduce the false positive (i.e, a legal entity is considered as an IOC) of IOCs extraction,
This paper implements an unsupervised syntactic-dependence based IOC extraction method.
More specifically, most of trigger verbs (e.g., attack, permeate, invade, block, etc.) describing
threatening actions often appear in intrusion descriptions, and IOCs are often syntactically depen-
dent on them. For instance, in the description: “WannaCry attacked Korea’s telecommunication system
in May 2017”, the verb “attacked” can be regarded as a trigger verb that describes a threatening
action, which subsequently forms a subject-predicate relationship with “WannaCry”. To extract
the entities most relevant to the attack event, we only need to detect the suspicious IOCs with an
explicit syntactic dependency (e.g., subject-predicate, verb-object, etc.) to the trigger verbs, which
is the most efficient and direct method to reduce the false positive of IOC extraction. Particularly,
the most intuitive verbs that describe the threat events are inserted in the VerbSet. Then, utilizing
the learned word representation in step iii to automatically supplement the VerbSet by comparing
the similarity of word vectors. The original set of trigger verbs describing different types of threat
is listed in TABLE 4.

The ultimate goal of this paper is to generate domain-specific CTI with domain tags. Given
a threat description set T = {t1, t2, ..., ti}(1 ≤ i ≤ n), threat trigger verbs for ti V erbSet =
{v1, v2, ..., vi}(1 ≤ i ≤ n), and candidate entity set IOCcandidate = {ioc1, ioc2, ..., ioci}(1 ≤ i ≤ n). For
each domain-specific threat text ti, extract ioci that has explicit semantic relationship with vi, and
integrate all ioc in text ti and the domain label of ti (derived from Algorithm 1) to form a complete
domain-specific CTI. The complete CTI extraction process is demonstrated in Algorithm 2.

Compared with traditional CTI, domain-specific CTI not only mitigates the false positive of
IOC extraction, but also empowers the platforms to share CTIs with relevant organizations and
eliminates the burden of security officers in manually filtering unrelated threat intelligence. In
addition, domain-specific CTI can assist security organization in deriving new insights about
threat trend across different domains, which will be described in the following section.
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Algorithm 2 Extracting domain-specific CTI

Require: Threat Descriptions T = {t1, t2, · · · , ti}.
Domain Tags D = {education, government, finance, IoT, ICS}.

Ensure: Domain-specific CTI Ci.
1: for each ti ∈ T do
2: tDi

←labeling ti ⊂ Di using CTI domain recognizer in Algorithm 1.
3: for each tDi

do
4: VerbSet← scanning trigger verbs.
5: IOCcandidate ← detecting suspicious IOCs using hierarchical IOC.
6: for vi in VerbSet do
7: for ioci in IOCcandidate do
8: if ioci and vi have syntactic dependencies.
9: RealIOCi ← inserting ioci

10: end for
11: end for
12: Ci ← Integrating RealIOCi and Di as domain-specific CTI.
13: end for
14: end for

5 THREAT INDEX

With the learned domain-specific CTI, it can evaluate the threat impact severity caused by
different types of attack in each domain. Threat-Index, a novel metric that quantitatively mea-
sures the threat severity from the perspective of security-related social opinion, is proposed.
By examining the threat descriptions, it is discovered that cyber attacks that cause catastrophic
damage to a domain often exploit multiple vulnerabilities, most of which are labeled as high-
risk vulnerabilities by CVE Details16. On the contrary, intrusions using a single and light-risk
vulnerability hardly cause fatal damage to a company. This fact enlightens us to quantitatively
evaluate the risks of different threats towards each domain. Threat-Index follows three empirical
intuitions: (i) the more frequently the domain is attacked, the greater the threat it faces; (ii) the
more vulnerabilities exploited in the attack, the greater the harm is towards the system; (iii) the
higher the severity level of vulnerabilities is, the more significant their impacts are towards the
industry. As a result, the threats can be quantified by exploring the frequency of attacks, the
number of exploited vulnerabilities, and the compromised level of vulnerabilities in each domain.

Definition 2 (Threat-Index). Given a threat description collection with domain tags T =
{td1 , td2 , · · · , tdi} (1 ≤ i ≤ n), attack types A = {a1, a2, ..., aj} (1 ≤ j ≤ n), and the domain
tags D = {d1, d2, ..., dk} (1 ≤ k ≤ n), Threat-Index quantifies the threat impact of attack type ai
towards a domain di by analyzing the CTIs in threat description ti, which can be further divided
into Impact severity index and Domain-normalized impact severity index.

Specifically, in Definition 2, A represents five attack types concerned in this paper, including
DDoS, Malware, Phishing, Ransom and APT. D consists of five domains: ICS, IoT, finance, education

16. https://www.cvedetails.com
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and government. Each threat description text tdk corresponds to an attack type aj and its impacted
domain dk.

Definition 3 (Impact severity index). Given a threat description sequence T = {td1 , td2 , ..., tdi}
(1 ≤ i ≤ n), an attack type set A = {a1, a2, ..., aj} (1 ≤ j ≤ n), a domain tag set D =
{d1, d2, ..., dk} (1 ≤ k ≤ n), and a vulnerability set C = {c1, c2, ..., cm} (1 ≤ m ≤ n). Impact severity
index computes the threat severity for each domain dk under attack type aj as follows:

Haj ,dk = α
∑
aj

tdk +(1− α)
∑

cm∈tdk

Rcm (3)

where α is risk weight coefficient, tdk is threat description depicting domain dk being attacked by
attack aj ,

∑
aj

tdk represents the total frequency of domain dk being targeted by attack aj ,
∑
Rcm

calculates total risk score of vulnerabilities included in tdk , Rcm is the risk score of vulnerability
cm assessed by CVE details, and each tdk contains some vulnerabilities cm (Rcm = 0 means that the
attack does not use any vulnerability registered in CVE details).

Compared with attack frequency, the risk score of vulnerabilities exploited in a threat can
better reflect the severity of attacks, thus α is set to 0.4. Impact severity index concentrates on
quantifying the impact severity of a particular type of attacks on different domains. Take the APT
attack in TABLE 5 as an example, its impact on IoT, ICS, education, finance and governmental
domain is 0.05, 7.57, 0.58, 2.82, and 9.89 (see the first row in TABLE 5) respectively, which reveals
the fact that APT attack has the most serous impact on governmental domain.

TABLE 5: Impact severity index of different domains.

Type

Domain
IoT ICS education finance government

APT 0.05 7.57 0.58 2.82 9.89

DDoS 2.50 58.40 0.32 5.13 29.15

Malware 0.67 44.64 0.46 9.42 32.26

Phishing 0.02 2.81 0.10 1.96 6.21

Ransom 0.33 2.55 0.06 4.10 2.35

Impact severity index analysis results. TABLE 5 demonstrates the severity of the same type
of attacks for different domains. The results indicate that the ICS industry and the government
have experienced the highest threat impact severity among all five industries. In particular, DDoS
and malware threats have incurred the most serious impacts on these two domains. Specifically,
the impact severity indices of DDoS to ICS and government are 58.40 and 29.15 respectively.
The malware impact severity indices to ICS and government are 44.64 and 32.26 respectively.
Meanwhile, sophisticated APT attackers seem to be aiming at breaking into the government
agencies, and they infiltrate the systems and hibernate for months or even years to find the
right targets to breach sensitive political messages. In recent years, as more and more ICS are
connected to the Internet, many high-value ICS devices and systems are exposed to the evildoers
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on the Internet. ICS has in fact become the preferred target of DDoS attacks. Moreover, hackers
often launch catastrophic ransomware attacks towards the financial domain, which often take
advantage of the virtual currency such as bitcoin.

Definition 4 (Domain-normalized impact severity index). Given a Impact severity index Haj ,fk and
the average threat index of domain dk being targeted by N types of attacks. Domain-normalized
impact severity index assesses which attack type ai induces the most severe impact towards domain
dk as follows:

Vaj ,dk =
Haj ,dk

Averagedk
, (4)

Averagedk =
1

N

∑
aj∈A

tdk , (5)

where Haj ,dk represents the impact severity index of the attack type of aj towards domain dk,
Averagedk is the average threat index of domain dk being targeted by N types of attacks,

∑
aj∈A tdk

is a collection of threat description indicating that attack type aj affects domain dk, and N records
the number of different attack types that threaten domain dk.

TABLE 6: Domain-normalized impact severity index under different types of attacks

Type

Domain
IoT ICS education finance government

APT 0.70 0.33 0.29 0.61 2.02

DDoS 3.50 2.52 1.60 1.10 0.62

Malware 0.94 1.93 2.32 1.01 1.83

Phishing 0.03 0.12 0.49 1.46 0.39

Ransom 0.46 0.11 0.30 1.48 0.15

Domain-normalized impact severity index analysis results. Domain-normalized impact
severity index concentrates on evaluating the normalized severity level of each attack type for
a specific domain, which is able to reflect the threat proportion of different types of attacks in
a particular domain. TABLE 6 illustrates the normalized severity of five attack types for each
domain. DDoS attacks constitute the most prominent threat to the IoT domain as the largest
Threat-index (3.50) in the column of “IoT” is associated with “DDoS” (see the first column in
TABLE 6). In light of Mirai attack, a possible explanation for this trend is that IoT devices such
as cameras and sensors have become increasingly popular, but most of which have low security
standard. Meanwhile, for government, APT attack is the most popular attack type, which requires
more specialized attack techniques compared to other types of attacks, and costs more energy and
resources. Such attacks are often initiated by hackers with advanced intrusion techniques, whose
purpose is not to damage the system but to steal important confidential files in the system. The
high stake involved in government documents makes the government an obvious target for APT
attackers.
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It is worth-noting that the threat indices of phishing attack and ransomware attack are very
close in the financial industry. It is doubtful whether attackers often integrate these two types of
attack methods into one tool to invade financial devices and systems, and the suspicion is proved
by checking a large quantity of threat descriptions for financial domain.

TABLE 7: Well-known security vendors and their security products. (“X” indicates that the
manufacturer provides this type of product, and “-” means that there is no corresponding type of
product.)

Company DDoS APT Phishing Ransomware Trojan

Cisco X X X X X

Microsoft X - X - X

Symantec X X X X X

Mcafee X - X X X

Raytheon X - X X X

IBM X - - X X

HPE X - X - X

Checkpoint X - - - X

Palo Alto X - X X X

Oracle X - - X X

Splunk X - X X X

Kaspersky X X X X X

Palantir - - - X X

Synopsys - - - X X

Huawei X - X X X

FireEye X X X X X

BAE - - X X X

BT - - - X X

SonicWall X - X X X

Cloudflare X X X X X

Protection guidelines. The Threat-Index not only quantitatively evaluates the severity of
threats for each domain, but it also sheds light on security protections. Here, we further explore if
the existing security products can offer sufficient protections to alleviate the threat impact severity
for certain industries. In other words, it is desired to know whether current security products
can meet the needs that protect cyber system in different domains from malicious intrusion.
The understanding of existing security product landscape is crucial for designing the next-
generation security protection products. The products from 20 well-know security vendors(e.g.,
Cisco, Symantec, Kaspersky, etc.) are studied, and their major protection products are listed in
TABLE 7.

Based on data analysis, the frequency and intensity of attacks against ICS and government
are the highest among all the domains. Therefore, security vendors should put more efforts in
addressing the attacks towards these two domains and develop advanced protection products.
For ransomware attack, the financial industry has been more severely targeted compared with
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other domains. However, as illustrated in TABLE 7, there are too few products to protect against
ransomware attack to meet the current protection needs of the financial industry. In fact, intelli-
gent ransomware defense tools are needed urgently. As can be seen from TABLE 5, government
agencies should be most concerned with APT attacks. Nevertheless, only five security enterprises
claim to provide security products against APT attacks. Moreover, although most vendors claim
they have the ability to protect against phishing attacks, the descriptions of product designs and
tools reveal that most of them are only capable of protecting against low-level phishing attack,
while none is specialized in defending advanced spear-attacks and watering hole attacks.

Only a quarter of security companies protect against all types of attacks, while most vendors
can only professionally defend against one or two types of attacks, indicating there is a huge
gap between cyber attack and cyber defense. Although every domain has experienced a growing
number of novel attacks, most security organizations are not well grounded to conquer these
unknown cyber attacks. Meanwhile, most of the security products are generic ones, which are
not designed for specific attack types for particular domains. However, even the same type of
attacks often present different implementations and behaviors when targeting different domains.
Actually, domain-specific security products developed for attacks targeting different domain are
crucial to protect these diverse systems against infringement.

Recommendation. Security vendors should carefully study the details of each type of attack in
different domains to design and develop more specialized and targeted protection strategies. One
promising direction is to model the attack behavior characteristics of each attack type towards
a specific domain, and use machine learning models to create more effective targeted protection
mechanisms.

6 DISCUSSION OF THREAT TREND

6.1 Evolution of Different Attack Types
One of the key contributions of this manuscript is to propose a novel method that can produce
cyber threat intelligence (CTI) with domain tags. As a result, all CTIs can be grouped into
corresponding CTI classes based on their domain tags, which can help effectively demystify the
trend of threat evolution in a specific domain. Moreover, the categorized CTIs can be personalized
to serve CTI subscribers, which allow them to focus on the useful CTIs in a specific domain where
they are concerned. In fact, categorized CTIs make it possible to demystify the evolutionary trend
of different threats in particular domains. In this section, three insights on three types of attacks
for specific domains are identified by manually analyzing specific-domain CTIs, relevant threat
descriptions, source codes, etc. The detailed discoveries are discussed as follows.

Discovery 1. The implementations of DDoS attacks vary significantly across multiple
domains. When parsing the threat descriptions about the DDoS attack, it is found that attack
details of DDoS vary across different domains. More specifically, (i) most of the educational DDoS
attacks are TCP flood attacks, in which hackers send a large number of TCP connection requests to
the target server, but purposely avoid sending an acknowledgement to the server, which results
in a delay at the server. If the attackers send enough connection requests simultaneously, the
server resources will be exhausted by such delays, preventing it from responding to requests of
legitimate users. (ii) Most of government and ICS DDoS attacks are Domain Name System (DNS)
reflector attacks, in which a large number of requests disguising attack target IP are continuously
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sent to the DNS server. The target service will receive a significant amount of reply packages from
DNS, resulting in bandwidth exhaustion. (iii) For finance DDoS attacks, hackers often constantly
submit query scripts to the target server for requesting resources. Target servers consume an
enormous amount of resources to process these requests, leading to exhaustion of server resources
and rejection of the legitimate requests [35]. (iv) In IoT DDoS attacks, however, the attackers
invade the IoT devices (e.g., cameras, sensors) exposed on Internet to build botnets, and the
compromised devices will be remotely controlled by a covert C&C server. All compromised
devices unconsciously send requests to specific targets simultaneously upon the reception of
commands from the C&C server. In fact, the compromised devices will operate normally except
that it consumes more bandwidth, thus traditional safeguard tools are often incapacitated in
identifying them.

Discovery 2. As soon as the ransomware appears, its variants will follow, and some will
eventually evolve into mining viruses. By analyzing the financial CTIs and educational CTIs, it
is found that the Ransomware attacks are increasing sharply in the domains. To explore the rela-
tionship between Ransomware attacks, relevant CTIs and source codes of multiple Ransomware
are manually analyzed to demystify the origin and their evolution. Particularly, on May 12, 2017,
the notorious WannaCry ransom first broke out, which caused unprecedented damage to many
key information infrastructures. WannaCry targeted computers running the Microsoft Windows
operating system by encrypting data and demanding ransom payments in the form of Bitcoin.

In June 2017, Petya, the variant of Wannacry, was used for a global cyber attack, primarily
targeting Ukraine. It also propagates via the EternalBlue exploited by Wannacry. Actually, the
impact of Petya on security communities is comparable to that of WannaCry. Scrutinizing the
exploitation script of Petya, its attack process mainly consist of three steps: first, accessing disks
to scan file system; second, overwriting the computer’s master boot record (MBR) to prevent users
from entering the system; third, setting restart menu to execute MBR that has been maliciously
modified to encrypt the master file table of the NTFS file system. The key encryption function is
shown in Listing 1, in which lines 10 to 12 implement file encryption and ransom notice.

1 v0=open (”\\ c : ” , 0 x4000000u , 3 u , 0 , 3 u , 0 , 0 ) ;
2 i f ( v0 )
3 {
4 i f ( d e v i c e I o c o n t r o l ( v0 , 0 x70000u ,0 ,0 ,& OutBuffer , 0 x18u ,& BytesReturn , 0 ) )
5 {
6 v1=LocalAl loc ( 0 , 1 0 * l move ) ;
7 i f ( GenAESkey ( lpThreadParameter ) )
8 {
9 {

10 C r y p t f i l e ((& filename , a2−1,a3 ) , 1 5 , lpThreadParameter ) ;
11 Write ransome (1Mz7153HMUxXTur2R) ;
12 CryptDestroyKey ( * ( DWORD) * ) lpThreadParameter +5) ) ;
13 }
14 }
15 }
16 CloseHandle ( v0 ) ;
17 }

Listing 1: Petya encrypts files.

Both WannaCry and Petya belong to a family of ransomware based on the EternalBlue
vulnerability. However, our analysis unveils notable differences between them. Petya exploits
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CVE-2017-0199 vulnerability for phishing attacks, which is then propagated through EternalBlue
and Eternal Ransom vulnerabilities. However, WannaCry automatically scans open 445 port of
Windows or even electronic information screens, and drop illicit elements such as ransomware,
remote control, Trojan horse, miner, and other malicious components in infected computers and
servers.

1 v6=openFi le ( FileName , 0 xc0000000 , 3 u , 0 , 3 u , 0 , 0 ) ;
2 i f ( v6==(HANDLE)−1)
3 {
4 v5=CryptGenkey ( * ( DWWORD) * ) ( a1 +8) , 0x660Eu , 1 u , ( HCRYPTKEY* ) ( a1 +20) ;
5 i f ( v3 )
6 {
7 hKey =*( DWORD * ) v1 ;
8 CryptSetKeyParam ( hkey , 4 u , pddata , 0 ) ;
9 }

10 }
11 i f ( F i l e S i z e . QuadPart <=0x10000 )
12 {
13 f i l e o f f s e t l o w = F i l e S i z e . Lowpart ;
14 CryptEncrypt AES ( * ( DWORD* ) ( a2 +20) ) ;
15 }
16 e l s e
17 {
18 f i l e o f f s e t l o w = F i l e S i z e . Lowpart ;
19 CryptEncrypt RSA ( * ( lp Bu f fe r * ) (0 x200 ) ) ;
20 }

Listing 2: NotPetya encrypts disk.

NotPetya, a variant of Petya, spread across the Internet on June 27, 2017. Compared with
Petya, NotPetya is more destructive since it can encrypt and lock the whole hard disk and extract
passwords from memory or local file system, whose key function is listed in Listing 2. NotPetya
chooses to encrypt the file using either AES or RSA depending on the file size: lines 4 and 9 show
the code for generating AES and RSA keys, line 14 demonstrates the file encryption using AES
method, and line 19 implements the RSA encryption.

In recent years, with the growing popularity of virtual currency, hackers are frantically de-
veloping cryptocurrency mining malware. In August 2017, CoinMiner, an advanced ransomware
variant using WMI (Windows Management Instrumentation), broke out in the world. It utilizes
the WMI standard event script (scrcons.exe) to exploit EternalBlue Vulnerability (MS17-010) in
order to invade the targeted system and embed the virus permanently in the system.

Discovery 3. The complexity of the phishing strategy is positively correlated with the
value of the target. Phishing attack is a type of Internet fraud that seeks to acquire user’s
credentials through deception, which attempts to obtain sensitive information such as accounts,
passwords, and other confidential information. Hackers typically deceive the victims to enter
private information on fake websites that look and feel the same as legitimate ones via spamming
emails. In this study, our domain-specific CTI analysis allows us to trace the evolution of phishing
attacks. It is discovered that they are evolving from Email phishing to Spear phishing, and eventually
to the most complicated Watering hole phishing. The phishing strategy adapts according to the
value of the target under attack.

(i) Email phishing. Email phishing is the simplest and most basic phishing attack, which sends
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elaborated emails that the victim trusts to deceive them to respond with the account number,
password and other personal information. It often entices the victim to connect to a malicious
website that is disguised as a legitimate site such as official online payment website, so that an
inattentive victim offers sensitive information. Email phishing is frequently used to attack individ-
ual users with less values, e.g., to steal game accounts or social media passwords. However, with
the popularization of anti-spam software and the improvement of security awareness, this crude
phishing has become almost inoperative in recent years.

(ii) Spear phishing. Currently, hackers prefer to adopt Spear phishing to escape interception
of traditional anti-phishing system. Spear phishing is a more advanced phishing attack, which
sends the victim an email with an attractive headline to entice the victim to open the email
carrying Trojan virus. There are two major differences between the spear phishing and the email
phishing: first, spear phishing uses more extensive social engineering techniques to gather as much
as information about the attack targets, such as the business, cooperation, and trade records of
the organization; second, the attacker sends more personalized messages that seem to include the
information that the victims are most concerned with. Therefore, the victims are more likely to
fall into the trap.

(iii) Watering hole phishing. To escape the most advanced anti-phishing systems, attackers
cunningly propose watering hole phishing, which is a more advanced form of phishing attack.
With watering hole phishing, the attackers first identify a set of websites the target group frequently
browses, and inject malicious scripts into these websites by exploiting website vulnerabilities.
Once victims browse the infected website, malicious elements are automatically downloaded and
executed to steal vital secrets or to destroy critical infrastructures. As watering hole phishing usually
relies on the websites that the attack targets trust, this type of phishing is the most dangerous one
compared with email phishing and spear phishing. Our analysis further exposes that this form of
phishing attack is often used by politically connected hacking groups to break into government
networks and the highly valuable ICS system.

6.2 Longitudinal Threat Analysis of Different Domains
Based on the domain-specific CTIs, the threat trends of different types of attacks on specific
domains are analyzed, and the statistical results are shown in Fig. 8. Particularly, Fig. 8(a) shows
that DDoS, phishing, and malware attacks have experienced a significant growth over the years in
education domain. Specifically, the attack frequency of malware attack fluctuated over the years,
and reached its zenith in 2012. Since then, this type of attack is gradually weakening. Overall,
DDoS and malware threats display an upward trend. From 2015 to 2017, it is noticed that the
rapid growth of ransomware. In particular, WannaCry broke out on May 12, 2017, and paralyzed
the facilities of many educational institutions by encrypting 230,000 computers within a single
day. During that time, the attack received widespread attention and was placed on numerous
news headlines. As such, the threat description of ransomware attacks reached its peak around
that time.

In recent years, the IoT-related threats have developed rapidly due to the growing number of
IoT devices. Most IoT devices do not support automated firmware updates or software repairs,
and users often do not pay close attention to the security issues including default account and
password (e.g., root, administrator, admin, admin123, test), which makes them an enticing attack
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(a) Attack trend in education (b) Attack trend in IoT

(c) Attack trend in ICS (d) Attack trend in government

(e) Attack trend in finance

Fig. 8: Streamgraph of attacks for different industries. y-axis represents the frequency of different
kinds of attacks, where the signs of positive or negative have no real mathematical meaning, i.e.,
both “400” and “-400” represent 400 attacks that occur in finance as shown in subfigure (e).

target. Meanwhile, many users are indifferent on whether their devices have been maliciously
exploited or not, which drive IoT devices to become the most attractive targets for building
botnets. A botnet with many compromised devices can effectively evade anti-DDoS system that
monitors the IP addresses of incoming requests. As the botnet’s DDoS requests are very similar to
those of legitimate access, it becomes difficult for traditional DDoS detection systems to recognize
such attacks. As illustrated in Fig. 8(b), the DDoS attack has a substantial advantage over other
types of attacks in the IoT domain. Since 2015, along with the rapid development of IoT, DDoS
attacks related to the IoT devices have seen an explosive growth, while in other domains DDoS
attacks are relatively stable over the years. In 2016, Mirai [36] broke out, which uplifted the DDoS
attack in IoT to reach an unprecedented threat impact.

In finance industry, domain-specific CTIs analysis shows that phishing attacks are dominated,
which avoid deliberately destroying files and programs, but stealthily hibernate in the system to
collect sensitive information including accounts, passwords, and other personal information. As
shown in Fig. 8(e), it is found that since 2007, the frequency of ransomware attacks for the financial
industry have increased year by year. Especially since 2013, the frequency of ransomware attacks
has shown a linear upward threat. The boom in virtual currencies during that time may have led
to this growing trend.
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7 CONCLUSION

Security companies increasingly rely on cyber threat intelligence to enhance resilience against
cyber attacks. In this paper, TIMiner, a novel CTI extraction framework, is proposed to auto-
matically extract IOCs and generate categorized CTIs with domain tags from social media. More
specifically, first, a domain tagging method based on the variant of CNN is presented to label the
domain tags for threat descriptions. Then, a hierarchical IOC extraction approach based on word
embedding and syntactic dependency is presented, which is capable of identifying unknown
IOCs effectively. Finally, IOCs are combined with their corresponding domain tags to generate
the domain-specific CTIs. Domain-specific CTIs can be shared with relevant CTI subscribers,
and allow them to quickly identify the security posture in their respective industries. Moreover,
Threat-Index is proposed to quantitatively measure the threat severity caused by different types
of attack in each domain. By analyzing the domain-specific CTIs generated by TIMiner, new
insights about the threats are uncovered and threat trend analysis is performed to facilitate the
design of better cyber defense mechanisms for multiple domains.
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APPENDIX
Our data collection system continuously collects threat-related text/posts from the social media
data sources shown in TABLE 8.

TABLE 8: The list of threat-related social media data sources

Source URL

AlienVault www.alienvault.com/blogs/labs-research
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BlueCoat www.bluecoat.com/security/security-blog
Carnal0wnage http://carnal0wnage.attackresearch.com/

Cert http://www.cert.org/blogs/
Coresecurity https://blog.coresecurity.com/

CounterMeasures https://www.symantec.com/blogs/threat-intelligence
CloudFlare https://blog.cloudflare.com/

Crowdstrike Blog https://www.crowdstrike.com/blog/
Crowdstrike Threat https://www.crowdstrike.com/blog/category/threat-intel-research/

Cryptome http://cryptome.org/
Cytegic https://www.cytegic.com/blog/
Darknet https://www.darknet.org.uk/

Darknet Posts https://www.darknet.org.uk/popular-posts/
DeepEnd Research http://www.deependresearch.org/

Ddanchev Blog http://ddanchev.blogspot.com/
Fireeye Blog https://www.fireeye.com/blog.html

Fireeye Threat https://www.fireeye.com/blog/threat-research.html
Forcepoint https://www.forcepoint.com/blog/x-labs

Fox IT http://blog.fox-it.com/
Garwarner Blog http://garwarner.blogspot.com/

Hexacorn http://www.hexacorn.com/blog
Hotforsecurity https://https://hotforsecurity.bitdefender.com/

Hotforsecurity Threat https://hotforsecurity.bitdefender.com/blog/category/e-threats/alerts
Hphosts http://hphosts.blogspot.com/

Hacker News https://thehackernews.com/
Hacker Attack https://thehackernews.com/search/label/Cyber%20Attack

Hacker Malware https://thehackernews.com/search/label/Malware
Hack Forums https://hackforums.net

Hacker Vulnerability https://thehackernews.com/search/label/Vulnerability
Hacker Breach https://thehackernews.com/search/label/data%20breach

Honeynet https://www.honeynet.org/blog
Infosecinstitute https://resources.infosecinstitute.com/

Info Security https://www.infosecurity-magazine.com/news/
IBM News https://securityintelligence.com/news/
IBM Threat https://securityintelligence.com/category/x-force/

Infoblox http://internetidentity.com/blog/
Juniper https://forums.juniper.net/t5/Blogs/ct-p/blogs

Kaspersky https://securelist.com/
Kahusecurity http://www.kahusecurity.com/2018.html
kahusecurity http://www.kahusecurity.com/

Krebsonsecurity http://https://krebsonsecurity.com/
Looking https://www.lookingglasscyber.com/blog/



27

Mobile Security https://blog.trendmicro.com/category/mobile-security/
Microsoft Blog https://www.microsoft.com/security/blog/
Malwarebytes https://www.malwarebytes.com/

Malwr https://malwr.com/
Nakedsecurity https://nakedsecurity.sophos.com/

Netscout https://www.netscout.com/blog
Paloa https://unit42.paloaltonetworks.com/

Paloaltonetworks https://blog.paloaltonetworks.com/
Radware https://blog.radware.com/

Radware Ddos https://blog.radware.com/security/ddos/
Recordedfuture https://www.recordedfuture.com/blog/

RSA Blog http://blogs.rsa.com/
Schneier Blog https://www.schneier.com/

Secniche http://secniche.blogspot.com/
Schneier News https://www.schneier.com/news/
Skullsecurity blog.skullsecurity.org
Spider Labs https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/
Sucuri Blog https://blog.sucuri.net/

Sans https://isc.sans.edu/
SecureAuth https://www.secureauth.com/blog

Securosis https://securosis.com/blog
Sight http://www.isightpartners.com/blog/

Security Intelligence https://securityintelligence.com/
Security News https://securityintelligence.com/news/

Trend Micro https://blog.trendmicro.com/trendlabs-security-intelligence/category/social-media/
Trend Micro Blog https://blog.trendmicro.com/

Trustwave https://www.trustwave.com/en-us/resources/
Trustwave Blog https://www.trustwave.com/en-us/resources/blogs/trustwave-blog/

Taosecurity http://taosecurity.blogspot.com/
Tripwire https://www.tripwire.com/state-of-security/
Veracode https://www.veracode.com/blog

Verisign Blog https://blog.verisign.com/category/security/
Webroot https://www.webroot.com/blog/

Welive Security https://www.welivesecurity.com/
Webroot Intelligence https://www.webroot.com/us/en/business/threat-intelligence

X-Force https://securityintelligence.com/x-force/
Zscaler Blog https://www.zscaler.com/blogs


